Refrigerator operation and fault monitoring system based on acoustic signal wireless remote transmission and voiceprint recognition
-
摘要: 制冷机在工业企业中的使用极为广泛,为了能及时发现制冷机长期运行过程中因气缸、曲轴磨损及设备松动等引起的运行异常及故障,保证制冷机的长期、稳定运行,研制了一套基于声信号无线远传和声纹识别的制冷机运行及故障监控系统。系统采用通用分组无线业务(GPRS)移动通讯网络,将现场采集到的制冷机运转噪声信号无线远传给上位机,然后在上位机内采用Mel倒谱系数(MFCC)特征提取与长短时记忆(LSTM)神经网络相结合的声纹识别方法对接收到的声信号进行处理,进而对制冷机的运行状况及故障进行监控和识别。试验结果表明,采用MFCC与LSTM神经网络相结合的方法,可以有效地提高系统的识别率及诊断效果,具有良好的应用前景。Abstract: Refrigerators are widely used in industrial enterprises. In order to timely find the operation abnormalities and faults caused by cylinder and crankshaft wear and equipment looseness during the long-term operation of the refrigerator, and ensure its long-term stable operation, a monitoring system for the refrigerator operation and fault based on wireless remote transmission of acoustic signal and voiceprint recognition is developed. The system uses GPRS mobile communication network to wirelessly transmit the refrigerator operation noise signal collected on site to the host computer, and then uses the voiceprint recognition method of Mel-frequency cepstral coefficient (MFCC) feature extraction and long short-term memory (LSTM) neural network to monitor and identify the operation status and faults of the refrigerator. The experimental results show that the combination of MFCC and LSTM neural network can effectively improve the recognition rate and diagnosis effect of the system, and has a good application prospect.
-
Keywords:
- refrigerator /
- MFCC /
- LSTM /
- voiceprint recognition /
- monitoring system
-
-
[1] 周萍,沈昊,郑凯鹏. 基于MFCC与GFCC混合特征参数的说话人识别[J]. 应用科学学报, 2019, 37(1): 24-32. [2] 刘思思,谭建平,易子馗. 基于MFCC和SVM的车窗电机异常噪声辨识方法研究[J]. 振动与冲击, 2017, 36(5): 102-107. [3] 杨毫鸽. 飞机发动机异常声音识别方法研究[D]. 南昌: 南昌航空大学, 2018. [4] 王鑫,吴际,刘超,等.基于LSTM循环神经网络的故障时间序列预测[J].北京航空航天大学学报,2018,44(4):772-784. [5] 龚安,马光明,郭文婷,等.基于LSTM循环神经网络的核电设备状态预测[J].计算机技术与发展,2019,29(10):41-45. [6] 李俊卿,陈雅婷.基于LSTM网络的同步电机励磁绕组匝间短路故障预警[J].电力科学与工程,2020,36(6):37-42. [7] 牟俊杰,姚刚,孙涛.基于CNN-LSTM神经网络的声纹识别系统设计[J].电子技术应用,2021,47(3):75-78. [8] 曲鹏程.基于数据驱动的往复式压缩机设备故障预测算法研究及应用[D].青岛:青岛科技大学,2020. [9] GREFF K,SRIVASTAVA R K,KOUTNIK J,et al.LSTM:a search space odyssey[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(10):2222-2232.
计量
- 文章访问数: 5
- HTML全文浏览量: 0
- PDF下载量: 4