• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

用于水下探测的宽带超声换能器设计

刘晓晓, 张浩, 曾涛

刘晓晓, 张浩, 曾涛. 用于水下探测的宽带超声换能器设计[J]. 无损检测, 2022, 44(1): 74-79. DOI: 10.11973/wsjc202201018
引用本文: 刘晓晓, 张浩, 曾涛. 用于水下探测的宽带超声换能器设计[J]. 无损检测, 2022, 44(1): 74-79. DOI: 10.11973/wsjc202201018
LIU Xiaoxiao, ZHANG Hao, ZENG Tao. Design of wideband ultrasonic transducer for underwater detection[J]. Nondestructive Testing, 2022, 44(1): 74-79. DOI: 10.11973/wsjc202201018
Citation: LIU Xiaoxiao, ZHANG Hao, ZENG Tao. Design of wideband ultrasonic transducer for underwater detection[J]. Nondestructive Testing, 2022, 44(1): 74-79. DOI: 10.11973/wsjc202201018

用于水下探测的宽带超声换能器设计

基金项目: 

上海材料研究所技术创新项目(21181302)

详细信息
    作者简介:

    刘晓晓(1995-),女,助理工程师,主要从事超声换能器的研究工作

    通讯作者:

    张浩, E-mail:zhanghao324419@126.com

  • 中图分类号: TB552;TG115.28

Design of wideband ultrasonic transducer for underwater detection

  • 摘要: 为研制一种可用于水下探测的宽带纵振换能器,采用双激励设计方法拓宽换能器带宽,预设换能器目标谐振频率为23,42 kHz,基于双激励纵振换能器共振频率方程,对双激励纵振换能器进行了理论设计,在此基础上通过有限元建模优化设计,并对其在空气中和水中的导纳曲线和发射电压响应进行了仿真。仿真结果表明,该换能器在空气中的谐振频率为22.56,42.56 kHz,对应导纳为53.44,22.7 mS;在水中的工作频带为19.6~43.6 kHz,最大发射响应为147.1 dB,带内起伏为6.7 dB。制作的换能器在空气中的谐振频率为22.14,41.2 kHz,对应的导纳为47.4,17.7 mS;在水中的工作频带为19.0~43.5 kHz,带内起伏为8 dB,与理论设计基本一致,符合设计要求。
    Abstract: To develop a broadband longitudinal vibration transducer which can be used for underwater detection, this paper adopts the method of double incentive design to broaden the bandwidth of the transducer. Setting the target resonant frequency of the transducer as 23 kHz, 42 kHz, based on double incentive resonance frequency equation of longitudinal vibration transducer, this paper carried on the theoretical design of the double incentive longitudinal vibration transducer. On the basis of optimization design by finite element modeling, we simulate its admittance curve and transmission voltage response in air and water. The simulation results show that the resonant frequency of the transducer in air is 22. 56 kHz and 42. 56 kHz, the corresponding admittance is 53. 44 mS and 22. 7 mS, the bandwidth of the transducer in water is 19. 6~43. 6 kHz, the maximum emission response is 147. 1 dB, and the in-band fluctuation is 6. 7 dB. The transducer prototype was made and its resonant frequency in air is 22. 14 kHz and 41. 2 kHz, the corresponding admittance is 47. 4 mS and 17. 7 mS, the work bandwidth in water is 19. 0-43. 5 kHz, and the fluctuation in the band is 8 dB, which is basically consistent with the theoretical design and meets the design requirements.
  • [1] 刘孟庵, 连立民.水声工程[M].杭州:浙江科学技术出版社, 2002.
    [2] 何祚镛, 赵玉芳.声学理论基础[M].北京:国防工业出版社, 1981.
    [3] 刘伯胜, 雷家煜.水声学原理[M].哈尔滨:哈尔滨工程大学出版社, 2002.
    [4] 栾桂冬, 张金铎, 王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社, 2005.
    [5] 赵欢.双激励源宽带纵振换能器研究[D].北京:中国舰船研究院, 2014.
    [6] 莫喜平.水声换能器研究新进展[J].应用声学, 2012, 31(3):171-177.
    [7] 周天放.宽带纵向换能器研究[D].哈尔滨:哈尔滨工程大学, 2011.
    [8]

    YAO Q S, BJORNO L.Broadband tonpilz underwater acoustic transducers based on multimode optimization[J].IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1997, 44(5):1060-1066.

    [9] 孟祥迪, 林书玉.级联式变截面压电换能器尺寸对其性能的影响[J].陕西师范大学学报(自然科学版), 2019, 47(2):51-56.
    [10] 林书玉.夹心式复频功率超声压电换能器及其电端匹配电路的研究[J].声学与电子工程, 1997(3):24-28.
    [11] 林书玉.双激励源压电陶瓷超声换能器的共振频率特性分析[J].电子学报, 2009, 37(11):2504-2509.
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-09
  • 刊出日期:  2022-01-09

目录

    /

    返回文章
    返回