高级检索

    用于水下探测的宽带超声换能器设计

    Design of wideband ultrasonic transducer for underwater detection

    • 摘要: 为研制一种可用于水下探测的宽带纵振换能器,采用双激励设计方法拓宽换能器带宽,预设换能器目标谐振频率为23,42 kHz,基于双激励纵振换能器共振频率方程,对双激励纵振换能器进行了理论设计,在此基础上通过有限元建模优化设计,并对其在空气中和水中的导纳曲线和发射电压响应进行了仿真。仿真结果表明,该换能器在空气中的谐振频率为22.56,42.56 kHz,对应导纳为53.44,22.7 mS;在水中的工作频带为19.6~43.6 kHz,最大发射响应为147.1 dB,带内起伏为6.7 dB。制作的换能器在空气中的谐振频率为22.14,41.2 kHz,对应的导纳为47.4,17.7 mS;在水中的工作频带为19.0~43.5 kHz,带内起伏为8 dB,与理论设计基本一致,符合设计要求。

       

      Abstract: To develop a broadband longitudinal vibration transducer which can be used for underwater detection, this paper adopts the method of double incentive design to broaden the bandwidth of the transducer. Setting the target resonant frequency of the transducer as 23 kHz, 42 kHz, based on double incentive resonance frequency equation of longitudinal vibration transducer, this paper carried on the theoretical design of the double incentive longitudinal vibration transducer. On the basis of optimization design by finite element modeling, we simulate its admittance curve and transmission voltage response in air and water. The simulation results show that the resonant frequency of the transducer in air is 22. 56 kHz and 42. 56 kHz, the corresponding admittance is 53. 44 mS and 22. 7 mS, the bandwidth of the transducer in water is 19. 6~43. 6 kHz, the maximum emission response is 147. 1 dB, and the in-band fluctuation is 6. 7 dB. The transducer prototype was made and its resonant frequency in air is 22. 14 kHz and 41. 2 kHz, the corresponding admittance is 47. 4 mS and 17. 7 mS, the work bandwidth in water is 19. 0-43. 5 kHz, and the fluctuation in the band is 8 dB, which is basically consistent with the theoretical design and meets the design requirements.

       

    /

    返回文章
    返回