• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于功率谱密度峰值的大提离下脉冲涡流测厚方法

王安泉, 刘禹, 郝宪锋, 戴永寿, 闫泰松, 姜朝

王安泉, 刘禹, 郝宪锋, 戴永寿, 闫泰松, 姜朝. 基于功率谱密度峰值的大提离下脉冲涡流测厚方法[J]. 无损检测, 2021, 43(10): 29-33. DOI: 10.11973/wsjc202110006
引用本文: 王安泉, 刘禹, 郝宪锋, 戴永寿, 闫泰松, 姜朝. 基于功率谱密度峰值的大提离下脉冲涡流测厚方法[J]. 无损检测, 2021, 43(10): 29-33. DOI: 10.11973/wsjc202110006
WANG Anquan, LIU Yu, HAO Xianfeng, DAI Yongshou, YAN Taisong, JIANG Chao. Pulsed eddy current thickness measurement method under large lift based onpower spectral density peak[J]. Nondestructive Testing, 2021, 43(10): 29-33. DOI: 10.11973/wsjc202110006
Citation: WANG Anquan, LIU Yu, HAO Xianfeng, DAI Yongshou, YAN Taisong, JIANG Chao. Pulsed eddy current thickness measurement method under large lift based onpower spectral density peak[J]. Nondestructive Testing, 2021, 43(10): 29-33. DOI: 10.11973/wsjc202110006

基于功率谱密度峰值的大提离下脉冲涡流测厚方法

基金项目: 

国家重点研发计划项目(2016YFC0802302)

详细信息
    作者简介:

    王安泉(1979-),男,高级工程师,主要从事设备检测与无损检测技术研究工作

    通讯作者:

    刘禹, E-mail:liu_yu3@qq.com

  • 中图分类号: TG115.28

Pulsed eddy current thickness measurement method under large lift based onpower spectral density peak

  • 摘要: 以脉冲涡流检测信号的功率谱密度峰值作为特征量,并借助COMSOL软件开展了仿真试验,分析了该特征量与管道壁厚、提离值之间的关系;开展了基于该特征量的壁厚反演方法研究,形成了可应用于大提离下铁磁性管道壁厚检测的方法;最后在实验室加工的Q235管道阶梯试件上开展了试验。结果表明,在大提离条件下,壁厚测量误差能控制在±9%以内,且抗干扰能力强,多次测量结果的稳定性好。
    Abstract: The power spectral density peak of the pulsed eddy current testing signal was used as the feature, and the simulation experiment was carried out with the help of COMSOL software, and the relationship between the feature and the pipeline wall thickness and lift-off was analyzed. After that, the research on the wall thickness inversion method based on this feature was carried out, and a method that can be applied to the wall thickness detection of ferromagnetic pipelines under large lift was formed. Finally, experimental tests were carried out on the Q235 pipeline ladder specimen processed in the laboratory. The experimental results show that under the condition of large lift, the wall thickness detection error can be controlled within ±9%, the anti-interference ability is strong, and the multiple measurement results are stable.
  • [1]

    SOPHIAN A, TIAN G Y, FAN M B.Pulsed eddy current non-destructive testing and evaluation:a review[J].Chinese Journal of Mechanical Engineering, 2017, 30(3):500-514.

    [2] 武新军, 张卿, 沈功田.脉冲涡流无损检测技术综述[J].仪器仪表学报, 2016, 37(8):1698-1712.
    [3] 王蓉, 周德强. 基于铝屏蔽的铁磁性构件缺陷脉冲涡流检测研究[J].电子设计工程, 2016, 24(8):159-162.
    [4] 伍权. 铁磁性材料脉冲涡流检测信号处理方法研究[D].湘潭:湘潭大学, 2019.
    [5] 南玉龙, 杨龙兴, 阚仁峰, 等.基于KPCA的脉冲涡流缺陷分类识别技术的研究[J].物联网技术, 2017, 7(2):66-69.
    [6]

    WEN D D, FAN M B, CAO B H, et al.Adjusting LOI for enhancement of pulsed eddy current thickness measurement[J].IEEE Transactions on Instrumentation and Measurement, 2020, 69(2):521-527.

    [7] 张卿. 带金属保护层构件脉冲涡流检测解析模型及应用[D].武汉:华中科技大学, 2018.
    [8] 党伟. 带包覆层地面钢质管道损伤谐振磁场检测技术研究[D].北京:北京工业大学, 2019.
    [9] 郝宪锋, 宫昊, 孙国健, 等.基于支持向量机的带包覆层油气管道剩余壁厚反演研究[J].油气储运, 2021, 40(1):15-20.
    [10]

    PARK D G, ANGANI C S, KIM G D, et al.Evaluation of pulsed eddy current response and detection of the thickness variation in the stainless steel[J].IEEE Transactions on Magnetics, 2009, 45(10):3893-3896.

    [11]

    ANGANI C S, PARK D G, KIM C G, et al.The pulsed eddy current differential probe to detect a thickness variation in an insulated stainless steel[J].Journal of Nondestructive Evaluation, 2010, 29(4):248-252.

    [12] 柯海, 徐志远, 黄琛, 等.基于信号斜率的铁磁材料脉冲涡流测厚研究[J].仪器仪表学报, 2011, 32(10):2376-2381.
    [13] 徐志远. 带包覆层管道壁厚减薄脉冲涡流检测理论与方法[D].武汉:华中科技大学, 2012.
    [14]

    ANGANI C S, RAMOS H G, RIBEIRO A L, et al.Lift-off point of intersection feature in transient eddy-current oscillations method to detect thickness variation in stainless steel[J].IEEE Transactions on Magnetics, 2016, 52(6):1-8.

    [15]

    WEN D D, FAN M B, CAO B H, et al.A twice subtraction method for obtaining LOI in pulsed eddy current signals of ferromagnetic samples[J].IEEE Transactions on Magnetics, 2019, 55(12):1-7.

计量
  • 文章访问数:  15
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 刊出日期:  2021-10-09

目录

    /

    返回文章
    返回