• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

工业CT成像技术在再制造界面典型缺陷研究中的应用与展望

郭伟玲, 李恩重, 邢志国

郭伟玲, 李恩重, 邢志国. 工业CT成像技术在再制造界面典型缺陷研究中的应用与展望[J]. 无损检测, 2021, 43(4): 82-88. DOI: 10.11973/wsjc202104019
引用本文: 郭伟玲, 李恩重, 邢志国. 工业CT成像技术在再制造界面典型缺陷研究中的应用与展望[J]. 无损检测, 2021, 43(4): 82-88. DOI: 10.11973/wsjc202104019
GUO Weiling, LI Enzhong, XING Zhiguo. Application and prospect of industrial CT imaging technology in remanufacturinginterface typical defects research[J]. Nondestructive Testing, 2021, 43(4): 82-88. DOI: 10.11973/wsjc202104019
Citation: GUO Weiling, LI Enzhong, XING Zhiguo. Application and prospect of industrial CT imaging technology in remanufacturinginterface typical defects research[J]. Nondestructive Testing, 2021, 43(4): 82-88. DOI: 10.11973/wsjc202104019

工业CT成像技术在再制造界面典型缺陷研究中的应用与展望

基金项目: 

国家自然科学基金资助项目(51805540);北京市自然科学基金资助项目(3192040);国家自然科学基金资助项目(52005511)

详细信息
    作者简介:

    郭伟玲(1980-),女,博士,副研究员,主要从事表面再制造工程和表面功能涂层方面的工作

    通讯作者:

    郭伟玲, E-mail:guoweiling_426@163.com

  • 中图分类号: TB33;TG115.28

Application and prospect of industrial CT imaging technology in remanufacturinginterface typical defects research

  • 摘要: 介绍了工业计算机断层扫描技术(CT)成像技术的基本原理、组成和关键性能指标,激光熔覆增材再制造界面典型缺陷的形成机理,以及工业CT成像技术在再制造典型缺陷研究中的应用情况。针对激光熔覆增材再制造界面缺陷的特点,提出了工业CT成像技术在再制造界面缺陷分析中的研究难点,最后展望了工业CT成像技术在再制造界面典型缺陷研究中的应用前景。
    Abstract: The basic principle, components and the key performance of industrial computed tomography (CT) imaging technology are introduced in this work. The presentation also includes mechanism of internal defect in parts remanufactured by laser cladding technology and the practical application of industrial computed tomography in the detection of defects such as crack, voids and inclusions. In allusion to interface defect in parts remanufactured by laser cladding technology, research difficulty and prospect for application of industrial CT technique in detecting the defects in remanufacturing interface are discussed.
  • [1] 赵剑峰, 马智勇,谢德巧,等. 金属增材制造技术[J]. 南京航空航天大学学报, 2014, 46(5):675-683.
    [2]

    WALKER K F, LOURENCO J M, SUN S, et al. Quantitative fractography and modeling of fatigue crack propagation in high strength AerMet 100 steel repaired with a laser cladding process[J]. International Journal of Fatigue, 2017, 94:288-301.

    [3]

    XIE S Y, LI R D, YUAN T C, et al. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure[J]. Optics and Laser Technology, 2018, 99(1):374-381.

    [4]

    LOURENCO J M, SUN S D, SHARP K, et al. Fatigue and fracture behavior of laser clad repair of AerMet 100 ultra-high strength steel[J]. International Journal of Fatigue, 2016, 85:18-30.

    [5]

    OCELIK V, EEKMA M, HEMMATI I, et al. Elimination of start/stop defects in laser cladding[J]. Surface and Coating Technology, 2012, 206:2403-2409.

    [6]

    ZHANG W Y, JIANG W C, ZHAO X, et al. Fatigue life of a dissimilar welded joint considering the weld residual stress:experimental and finite element simulation[J]. International Journal of Fatigue, 2018, 109:182-190.

    [7]

    WANG Z Y, ZHANG Y F, WANG Y Q, et al. Numerical study on fatigue behavior of tubular joints for signal support structures[J]. Journal of Constructional Steel Research, 2018, 143:1-10.

    [8]

    FENG S Z, LI W. An accurate and efficient algorithm for the simulation of fatigue crack growth based on XFEM and combined approximations[J]. Applied Mathematical Modelling, 2018, 55:600-615.

    [9]

    LIU G Z, ZHOU D, GUO J M, et al. Numerical simulation of fatigue crack propagation interacting with micro-defects using multiscale XFEM[J].International Journal of Fatigue, 2018, 109:70-82.

    [10]

    BABADOPULOS L F, SOARES J B, FERREIRA J L, et al. Fatigue cracking simulation of aged asphalt pavements using a viscoelastic continuum damage model[J]. Road Materials and Pavement Design, 2018, 2:2164-2165.

    [11]

    SANAT W, HIROSHI K. Ultrasonic detection of fretting fatigue damage at bolt joints of aluminum alloy plates[J]. International Journal of Fatigue, 2009, 31, 1378-1385.

    [12] 李学兵, 陈亮, 申爱玲. 基于超声波探测用于齿轮内在缺陷的研究[J]. 机械研究与应用, 2016, 29(4):132-134.
    [13] 吕铎, 杨岳, 李雄兵, 等. 直齿圆柱齿轮内部缺陷的超声自动检测[J]. 机械传动, 2013, 37(12):124-127.
    [14] 杨志军, 陈亮, 刘延雷, 等. 焊缝裂纹缺陷的磁粉检测自动识别方法研究[J]. 制造业自动化, 2016, 38(4):22-25.
    [15]

    MA T, SUN Z G, CHEN Q. Crack detection algorithm for fluorescent magnetic particle inspection based on shape and texture features[J]. J Tsinghua Univ (Sci and Technol), 2018, 58(1):50-54.

    [16] 洪勇, 史红兵, 吴玉程, 等. 磁粉检测用带涂覆层裂纹缺陷人工试块的制作[J]. 化工机械, 2016, 43(6):833-834.
    [17] 张平. 锅炉管道焊缝液体渗透检测技术[J]. 压力容器, 2005, 22(2):51-55.
    [18] 黄磊, 莫瑕琳, 朱莉君, 等. 微小缺陷的液体渗透检测[J]. 无损检测, 2013, 35(12):34-38.
    [19] 刘晴岩. 液体渗透检测的可靠性[J]. 无损检测, 2002, 24(9):381-383.
    [20]

    SONDEJ F, BUCK A, KOSLOWSKY K, et al. Investigation of coating layer morphology by micro-computed X-ray tomography[J]. Powder Technology, 2015, 273:165-175.

    [21] 张朝宗, 郭志平, 张朋, 等.工业CT技术与原理[M]. 北京:科学出版社, 2009.
    [22]

    GREG M. X-ray computed tomography[J]. Physics Education,2001, 36(6):442-451.

    [23]

    CNUDDE V, BOONE M N. High-resolution X-ray computed tomography in geosciences:a review of the current technology and applications[J]. Earth-Science Reviews,2013, 123:1-17.

    [24]

    WHITING B, MASSOUMZADEH P, EARL O, et al. Properties of preprocessed sonogram data in X-ray computed tomography[J]. Medical Physics, 2006, 33(9):3290-3303.

    [25]

    CHANG M, XIAO Y S, CHEN Z Q. An industrial CT system for monitoring a running aero-engine[J]. Nuclear Science and Techniques, 2014,25(6):24-30.

    [26]

    ZHOU R F, ZHOU Y L. Study of solid-conversion gaseous detector based on GEM for high energy X-ray industrial CT[J]. Journal of X-ray Science and Technology,2014, 22(3):299-307.

    [27] 闫晓玲, 董世运, 徐滨士, 等. Fe901合金粉末激光熔覆层组织分布与缺陷产生机理分析[J]. 制造技术与机床, 2013(12):115-118.
    [28] 靖冠乙, 魏恺文, 王泽敏, 等. 激光选区熔化成形S-04钢的组织及性能[J]. 激光与光电子学进展, 2016, 53(11):1-8.
    [29]

    HALDAR B, SAHA P. Identifying defects and problems in laser cladding and suggestions of some remedies for the same[J]. Materials Today:Proceedings, 2018,5:13090-13101.

    [30]

    CLOETENS P, PATEYRONSALOMÉ M, BUFFIÈRE J Y, et al. Observation of microstructure and damage in materials by phase sensitive radiography and tomography[J]. Journal of Applied Physics, 1997, 81(9):5878-5886.

    [31]

    BUFFIÈRE J Y, MAIRE E, CLOETENS P, et al. Characterization of internal damage in a MMCp, using X-ray synchrotron phase contrast microtomography[J]. Acta Materialia, 1999, 47(5):1613-1625.

    [32]

    BUFFIÈRE J Y, PROUDHON H, FERRIE E, et al. Three dimensional imaging of damage in structural materials using high resolution micro-tomography[J]. Nuclear Instruments and Methods in Physics Research, 2005, 238:75-82.

    [33]

    SCHILLING P J, KAREDLA B P R, TATIPARTHI A K, et al. X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites[J]. Composites Science and Technology, 2005, 65(14):2071-2078.

    [34]

    PENUMADU D, KIM F, BUNN J. Damage of composite materials subjected to projectile penetration using high resolution X-ray micro-computed tomography[J]. Experimental Mechanics, 2016, 56:607-616.

    [35] 周渝庆, 段黎明. 基于工业CT的材料疲劳寿命预测[J]. 无损检测, 2009, 31(1):76-79.
    [36] 段黎明, 周渝庆. 基于工业CT图像的材料疲劳寿命预测[J]. 重庆大学学报, 2008, 31(8):831-835.
    [37] 徐夏刚, 赵歆波, 张定华, 等. 一种工业CT的短裂纹群扩展检测新方法[J]. CT理论与应用研究, 2006, 15(1):51-55.
    [38]

    XU X G, ZHANG D H, ZHAO X B, et al. Research on a novel testing way for collective short cracks by industrial CT[J]. Materials Science Forum, 2006, 532:229-232.

    [39] 赵超凡, 李兆霞. 焊接结构损伤区细观裂纹扩展的分形特征及其多尺度损伤表征[J]. 东南大学学报(自然科学版), 2013, 43(5):1039-1044.
    [40] 赵超凡, 李兆霞. 焊接结构内部孔洞演化特征及其多尺度损伤表征[J]. 工程力学, 2015, 32(8):182-189.
    [41]

    POLOZOV I, SUFⅡAROV V, KANTYUKOV A, et al. Selective laser melting of Ti2AlNb-based intermetallic alloy using elemental powders:effect of process parameters and post-treatment on microstructure, composition, and properties[J]. Intermetallics, 2019, 112:1-10.

    [42]

    GIANNI N, RADOMILA K, STANISLAVA F. Characterization of microshrinkage casting defects of Al-Si alloys by X-ray computed tomography and metallography[J]. International Journal of Fatigue,2012, 41:39-46.

    [43] 曹玉玲, 陈存柱. 铸件的工业CT三维检测技术[J]. CT理论与应用研究, 2003, 12(3):36-39.
    [44]

    GAMEROS A, CHIFFRE L D, SILLER H R, et al. A reverse engineering methodology for nickel alloy turbine blades with internal features[J]. CIRP Journal of Manufacturing Science and Technology, 2015, 9:116-124.

    [45] 艾轶博, 王楠, 阙红波, 等. 工业CT的高铁齿轮箱体材料缺陷识别[J]. 哈尔滨工业大学学报, 2015, 47(10):45-49.
    [46]

    ZHU L, DANG F N, XUE Y, et al. Analysis of micro-structural damage evolution of concrete through coupled X-ray computed tomography and gray-level co-occurrence matrices method[J]. Construction and Building Materials, 2019, 224:534-550.

    [47]

    WANG L, YUAN K, LUAN X G, et al. 3D characterizations of pores and damages in C/SiC composites by using X-ray computed tomography[J]. Applied Composite Materials, 2019, 26(2):493-505.

    [48]

    THOMAS J, ARTTU M, FREDRIK B, et al. X-ray micro-computed tomography investigation of fibre length degradation during the processing steps of short-fibre composites[J]. Composites Science and Technology, 2014, 105:127-133.

    [49]

    NIKISHKOV Y, SEON G, MAKEEV A. Structural analysis of composites with porosity defects based on X-ray computed tomography[J]. Journal of Composite Materials, 2013, 48(17):2131-2144.

    [50] 赵付宝, 王从科, 张霞, 等. 工业CT在树脂基复合材料缺陷检测中的应用[J]. 工程塑料应用, 2013, 41(11):96-98.
计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-26
  • 刊出日期:  2021-04-09

目录

    /

    返回文章
    返回