The effect of axial cracks in a thick-walled pipe on the reflection characteristics of C-SH0 mode
-
摘要: 采用有限元方法分析了激励信号的中心频率、轴向裂纹长度、缺陷深度和缺陷位置对周向超声导波反射的影响。利用时域反射系数R评价了轴向裂纹反射回波强度随缺陷尺寸和中心频率的变化趋势。对于一定尺寸的非贯通轴向裂纹,当中心频率从55 kHz增加到110 kHz时,周向水平剪切模态(C-SH0)的R略有增加。在给定的中心频率下,随着裂纹长度的增加,R先增大后减小,再进入振荡区,最后趋于稳定。因此,得出C-SH0模态对内部缺陷和外部缺陷具有相同的敏感性的结论。最后确定了不同轴向范围内R的最大值和最小值,可用于缺陷尺寸的定量分析。Abstract: The effects of the center frequency of excitation signal, axial crack length, depth, and positions of defects on circumferential ultrasonic guided wave reflection were analyzed. Time-domain reflection coefficient (R) was used to evaluate the variation trend of the reflection strength with the defect size and the center frequency for axial crack. For a given size of non-through-wall axial crack, the R of circumferential shear horizontal (C-SH0) mode increased slightly when the center frequency was increased from 55 kHz to 110 kHz. At a given center frequency, for through-wall axial crack, the R firstly increased linearly, then decreased, subsequently entered an oscillatory regime, and finally became stable with the increase in the crack length. Therefore, the conclusion of C-SH0 mode had the same sensitivity to internal and external defects was given. The maximum and minimum values of R at varying axial extents were identified and can be used for defect sizing.
-
-
[1] FU Y, UNDERHILL P R, KRAUSE T W. Factors affecting spatial resolution in pulsed eddy current inspection of pipe[J]. Journal of Nondestructive Evaluation, 2020, 39(2):9.
[2] 何存富, 郑明方, 吕炎, 等. 超声导波检测技术的发展、应用与挑战[J]. 仪器仪表学报, 2016, 37(8):1713-1735. [3] HAIDER M F, GIURGIUTIU V, STRUCTURES. Analysis of axis symmetric circular crested elastic wave generated during crack propagation in a plate:A helmholtz potential technique[J]. International Journal of Solids & Structures, 2018,134:5-7.
[4] MAHAL H N, YANG K, NANDI A K. Detection of defects using spatial variances of guided-wave modes in testing of pipes[J]. Applied Sciences-Basel, 2018, 8(12):23.
[5] 卢超, 盛华吉, 宋凯, 等. 钢轨轨底斜裂纹的超声导波散射特性[J]. 无损检测, 2016, 38(5):18-22,25. [6] ROSE J L.Ultrasonic guided waves in solid media[M]. Cambridge:Cambridge University Press,1999.
[7] COMBANIERE J, CAWLEY P, MCAUGHEY K, et al. Interaction between SH0 guided waves and tilted surface-breaking cracks in plates[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2019, 66(1):119-128.
[8] 陈洪磊, 刘增华,子明,等.有限单元法在超声导波检测技术中的应用[J].力学进展,2018,44(5):7-23. [9] 温宇立, 武静, 林荣, 等. 基于相轨迹的多裂纹管道超声导波检测研究[J]. 振动与冲击, 2017, 36(23):114-122. [10] 罗更生, 戴翔. 基于B扫描成像的油气对焊弯管缺陷的超声导波检测[J]. 无损检测, 2019, 41(8):53-57,66. [11] MA S, WU Z, WANG Y, et al. The reflection of guided waves from simple dents in pipes[J]. Ultrasonics, 2015, 57(1):190-197.
[12] ZHANG X, TANG Z, LV F, et al. Scattering of torsional flexural guided waves from circular holes and cracklike defects in hollow cylinders[J]. NDT & E International, 2017, 89(7):56-66.
[13] MIAO H C, HUAN Q, LI F X, et al. A variable-frequency bidirectional shear horizontal (SH) wave transducer based on dual face-shear (d(24)) piezoelectric wafers[J]. Ultrasonics,2018,89:13-21.
[14] ZHAO X, ROSE J L. Guided circumferential shear horizontal waves in an isotropic hollow cylinder[J]. Journal of the Acoustical Society of America, 2004, 115(5):1912.
[15] LIU W X, TANG Z F, LV F Z, et al. Numerical investigation of locating and identifying pipeline reflectors based on guided-wave circumferential scanning and phase characteristics[J]. Applied Sciences-Basel, 2020, 10(5):24.
[16] 张小明, 李智, 禹建功, 等. 压电圆柱曲面板中的周向导波复频散特性[J]. 应用力学学报, 2019, 36(2):372-378,508. [17] ZHANG H, DU Y H, TANG J H, et al. Circumferential SH wave piezoelectric transducer system for monitoring corrosion-like defect in large-diameter pipes[J]. Sensors, 2020, 20(2):18.
[18] MOSER F, JACOBS L J, QU J. Modeling elastic wave propagation in waveguides with the finite element method[J]. NDT & E International, 1999, 32(4):225-234.
计量
- 文章访问数: 10
- HTML全文浏览量: 0
- PDF下载量: 3