Material identification for composite metal layer based on pulsed eddy current
-
摘要: 针对石油双层复合金属管的非破坏性原位鉴别问题,提出了一种基于脉冲涡流的复合金属层材料鉴别方法。该方法充分利用脉冲涡流频谱范围广、检测深度大的优势,采用脉冲涡流检测方法避免了包覆金属层的屏蔽效应,实现了对待测金属层的检测与识别。对不锈钢包覆的铜、铁、铝等3种模拟试样开展脉冲涡流检测试验,提取了信号主峰幅值、主峰面积、过零时间及衰减时间等4个特征并进行分析。结果表明:上述4个特征都可以将铁磁性材料(铁)和非铁磁性材料(铜、铝)进行有效区分,过零时间则可以进一步实现对铜和铝材料的区分。上述研究证实了脉冲涡流检测在复合金属层材料鉴别中的有效性,为石油双层复合金属管的检测提供了借鉴。Abstract: Aiming at the problem of nondestructive in-situ identification of double clad metal tube in oil industry, a method based on pulsed eddy current for composite metal layer materials identification is proposed. The method takes advantages of pulsed eddy current, such as its wide frequency band and large detection depth, to realize the detection and identification of cladding metal layer by eliminating its shielding effect. In the experiment, pulse eddy current signals of three specimens of copper, iron, and aluminum cladded by stainless steel were acquisited and four characteristics of peak amplitude, peak area, zero-crossing time and decay time were extracted. The result shows that the four characteristics can effectively distinguish magnetic materials (iron) from non-ferromagnetic materials (copper, aluminum), and zero-crossing time can further realize the distinction between copper and aluminum. This research demonstrates that pulsed eddy current is effective for the material identification of composite metal layers, it provides reference for the in-situ identification of double clad metal tube.
-
Keywords:
- composite metal layer /
- pluse eddy current /
- material identification
-
-
[1] 杨宾峰. 脉冲涡流无损检测若干关键技术研究[D]. 长沙:国防科学技术大学, 2006. [2] 徐平. 多层金属结构中腐蚀缺陷的脉冲涡流检测技术研究[D]. 长沙:国防科学技术大学, 2005. [3] 潘春岭, 甘方明, 杨明. 基于双通道涡流传感器的高速金属材质识别系统[J]. 计算机测量与控制, 2007,15(7):879-881. [4] 陈昌华. 电脑式电磁分选检测仪在钢铁材质中的应用[J]. 无损探伤, 2002,26(4):31-33. [5] 边美华, 梁世容,彭家宁,等. 在役电力变压器导线材质原位无损鉴别方法研究[J]. 无损探伤, 2017,41(2):15-16. [6] 刘艺柱, 郭素娜. 基于电涡流传感器的硬币识别系统的设计[J]. 河南理工大学学报(自然科学版), 2010,29(2):229-232. [7] XIE S J, CHEN Z M, TAKAGI T, et al. Development of a very fast simulator for pulsed eddy current testing signals of local wall thinning[J]. NDT & E International, 2012, 51:45-50.
[8] PARK D G, ANGANI C S, KIM G D, et al. Evaluation of pulsed eddy current response and detection of the thickness variation in the stainless steel[J]. IEEE Transactions on Magnetics, 2009, 45(10):3893-3896.
[9] 康小伟, 付跃文. 带包覆层铁磁性管道腐蚀脉冲涡流检测技术[J]. 无损检测, 2011, 33(9):40-42. [10] 何赟泽, 罗飞路, 刘波. 脉冲涡流技术对飞机结构内层裂纹缺陷的检测识别[J]. 无损检测, 2009, 31(10):810-813. [11] 姜守安. 奥氏体不锈钢脉冲涡流检测技术研究[D]. 南京:南京航空航天大学, 2013. [12] 周德强, 张斌强,王海涛,等. 脉冲涡流圆柱型探头参数的优化设计[J]. 无损检测,2012,34(9):7-11. [13] 蒲军, 周强. 核电产品奥氏体不锈钢材料磁导率控制工艺[J]. 机械,2012,39(3):58-62. [14] 任吉林, 林俊明. 电磁无损检测[M].北京:科学出版社, 2008.
计量
- 文章访问数: 5
- HTML全文浏览量: 0
- PDF下载量: 4