• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

高速漏磁检测方法的发展

冯搏, 伍剑波, 邱公喆, 康宜华

冯搏, 伍剑波, 邱公喆, 康宜华. 高速漏磁检测方法的发展[J]. 无损检测, 2021, 43(2): 57-63. DOI: 10.11973/wsjc202102012
引用本文: 冯搏, 伍剑波, 邱公喆, 康宜华. 高速漏磁检测方法的发展[J]. 无损检测, 2021, 43(2): 57-63. DOI: 10.11973/wsjc202102012
FENG Bo, WU Jianbo, QIU Gongzhe, KANG Yihua. Development of high-speed magnetic flux leakage testing method[J]. Nondestructive Testing, 2021, 43(2): 57-63. DOI: 10.11973/wsjc202102012
Citation: FENG Bo, WU Jianbo, QIU Gongzhe, KANG Yihua. Development of high-speed magnetic flux leakage testing method[J]. Nondestructive Testing, 2021, 43(2): 57-63. DOI: 10.11973/wsjc202102012

高速漏磁检测方法的发展

基金项目: 

中央高校基本科研业务费资助项目(2020kfyXJJS015);国家重大专项(2018YFB0106000);国家自然科学基金面上项目(51875226)

详细信息
    作者简介:

    冯搏(1990-),男,讲师,硕士生导师,主要研究方向为电磁无损检测和超声导波检测

  • 中图分类号: TG115.28

Development of high-speed magnetic flux leakage testing method

  • 摘要: 漏磁检测法已成功应用于各类铁磁性材料的检测中,但当代生产技术的革新和新应用领域的出现对漏磁检测法的检测速度提出了新的挑战。高速漏磁检测的信号出现畸变,制约着检测速度的进一步提高。对此,众多研究人员对信号畸变的机理进行研究,发现磁化滞后效应是影响高速漏磁检测信号的主要因素。当高速运动的钢管通过磁化线圈时,涡流使得管壁内的磁场无法达到稳定状态,从而影响了漏磁检测信号。在机理探究的基础上,提出了增大磁化线圈长度、采用多级磁化等方法来抑制高速漏磁检测时信号的畸变。动生涡流无损检测法和动生涡流热成像检测法等新电磁检测方法也被提出,并在高速检测时获得了较好的效果。
    Abstract: Magnetic flux leakage (MFL) testing method has been successfully applied in the inspection of various ferromagnetic materials. However, the development of modern manufacturing technology and new application areas brought new challenges in the testing speed of MFL testing. The distortion of MFL signals in high speed testing limits the testing speed. Therefore, many researchers studied the mechanism of signal distortion and found that the time-lag in magnetization was the main reason to affect the MFL signal. When the steel pipe passing through the magnetizing coil at a high speed, the eddy current will influence the magnetization of pipe wall and further influence the MFL signal. Based on the mechanism study, methods such as increasing coil length and using multi-stage magnetization have been proposed to reduce the distortion of MFL signals at high speed. Velocity induced eddy current testing method and velocity induced eddy current thermography have also been proposed and achieved good results in high speed testing.
  • [1]

    WANG Z D,GU Y,WANG Y S. A review of three magnetic NDT technologies[J]. Journal of Magnetism & Magnetic Materials,2012,324(4):382-388.

    [2]

    PANDEY M D. Probabilistic models for condition assessment of oil and gas pipelines[J]. NDT & E International,1998,31(5):349-358.

    [3]

    RYU K S,ATHERTON D L,CLAPHAM L. Effect of bulk stress and pit depth on calculated far and near-side magnetic flux leakage pit signals[J]. Insight:Non-destructive Testing and Condition Monitoring,2002,44(5):285-288.

    [4]

    HWANG K,MANDATAM S,UDPA S S,et al. Characterization of gas pipeline inspection signals using wavelet basis function neural networks[J]. NDT & E International,2000,33(8):531-545.

    [5]

    POHL R,ERHARD A,MONTAG H J. NDT techniques for railroad wheel and gauge corner inspection[J]. NDT & E International,2004,37(2):89-94.

    [6]

    CHRISTEN R,BERGAMINI A,MOTAVALLI M. Influence of steel wrapping on magneto-inductive testing of the main cables of suspension bridges[J]. NDT & E International,2009,42(1):22-27.

    [7] 王阳生, 叶兆国,师汉民,等. 钢丝绳在线定量监测系统[J]. 无损检测,1989,11(6):153-156.
    [8] 刘克明, 李劲松,卢文祥,等. 钢丝绳断丝无损探伤原理及探伤系统信号预处理装置的研究[J]. 强度与环境,1988(3):17-22.
    [9] 李劲松, 刘克明,卢文样,等. 钢丝绳断丝探伤传感器的研制[J]. 华中理工大学学报,1988(3):75-80.
    [10] 白坚, 王平,邹朋朋. 基于轨面适应承载机构的钢轨表面缺陷的漏磁检测[J]. 无损检测,2017,39(11):16-19.
    [11] 谢菲, 孙燕华,姜宵园,等. 矿井提升钢丝绳在线漏磁无损检测装置[J]. 无损探伤,2019,43(1):34-36.
    [12] 单阳. 基于隧道磁传感器在电梯钢丝绳检测中的应用研究[D]. 昆明:昆明理工大学,2018.
    [13]

    SUN Y H, FENG B,YE Z J,et al. Change trends of magnetic flux leakage with increasing magnetic excitation[J]. Insight:Non-destructive Testing and Condition Monitoring,2015,57(12):1-8.

    [14] 冯搏,康宜华,汤祺,等. 涡流引起的钢棒磁化滞后时间理论计算[J]. 机械工程学报,2015,51(22):135-140.
    [15]

    FENG B,KANG Y H,SUN Y H,et al. Magnetization time lag caused by eddy currents and its influence on high-speed MFL testing[J]. Research in Nondestructive Evaluation,2019,30(4):189-204.

    [16] 杨理践,耿浩,高松巍,等.高速漏磁检测饱和场建立过程及影响因素研究[J].仪器仪表学报,2019,40(10):1-9.
    [17]

    MANDAYAM S,UDPA L. Invariance transformations for magnetic flux leakage signals[J]. IEEE Transactions on Magnetics,1996,32(3):1577-1580.

    [18]

    SHIN Y K. Numerical prediction of operating conditions for magnetic flux leakage inspection of moving steel sheets[J]. IEEE Transactions on Magnetics,1997,33(2):2127-2130.

    [19]

    PARK G S,PARK S H. Analysis of the velocity-induced eddy current in MFL type NDT[J]. IEEE Transactions on Magnetics,2004,40(2):663-666.

    [20]

    LI Y,TIAN G Y,WARD S. Numerical simulation on magnetic flux leakage evaluation at high speed[J]. NDT&E International,2006,39:367-373.

    [21]

    DU Z Y,RUAN J J,PENG Y,et al. 3D FEM simulation of velocity effects on magnetic flux leakage testing signals[J]. IEEE Transactions on Magnetics,2008,44(6):1642-1645.

    [22]

    PULLEN A L,CHARLTON P C,PEARSON N R,et al. Practical evaluation of velocity effects on the magnetic flux leakage technique for storage tank inspection[J]. Insight:Non-destructive Testing and Condition Monitoring,2020,62(2):73-80.

    [23] 冯搏. 钢管漏磁检测中的动生涡流影响机理及其应用[D]. 武汉:华中科技大学,2016.
    [24] 杨理践, 耿浩,高松巍.基于多级磁化的高速漏磁检测技术研究[J]. 仪器仪表学报,2018,39(6):148-156.
    [25]

    USAREK Z,CHMIELEWSKI M,PIOTROWSKI L. Reduction of the velocity impact on the magnetic flux leakage signal[J]. Journal of Nondestructive Evaluation,2019,38(1):28.

    [26]

    FENG B,KANG Y H,SUN Y H. Theoretical analysis and numerical simulation of the feasibility of inspecting nonferromagnetic conductors by an MFL testing apparatus[J]. Research in Nondestructive Evaluation,2016,27(2):100-111.

    [27] 夏慧, 伍剑波,黄晓明,等. 磁场运动速度对动生涡流热成像的影响[J]. 无损检测,2018,40(12):1-6.
计量
  • 文章访问数:  22
  • HTML全文浏览量:  1
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-24
  • 刊出日期:  2021-02-09

目录

    /

    返回文章
    返回