• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于Bezier拟合的射线检测焊缝缺陷指数和峰谷指数的计算

党长营, 李建素, 曾志强, 杜文华

党长营, 李建素, 曾志强, 杜文华. 基于Bezier拟合的射线检测焊缝缺陷指数和峰谷指数的计算[J]. 无损检测, 2021, 43(2): 48-52. DOI: 10.11973/wsjc202102010
引用本文: 党长营, 李建素, 曾志强, 杜文华. 基于Bezier拟合的射线检测焊缝缺陷指数和峰谷指数的计算[J]. 无损检测, 2021, 43(2): 48-52. DOI: 10.11973/wsjc202102010
DANG Changying, LI Jiansu, ZENG Zhiqiang, DU Wenhua. Calculation of DI and PVI in RT based on Bezier fitting[J]. Nondestructive Testing, 2021, 43(2): 48-52. DOI: 10.11973/wsjc202102010
Citation: DANG Changying, LI Jiansu, ZENG Zhiqiang, DU Wenhua. Calculation of DI and PVI in RT based on Bezier fitting[J]. Nondestructive Testing, 2021, 43(2): 48-52. DOI: 10.11973/wsjc202102010

基于Bezier拟合的射线检测焊缝缺陷指数和峰谷指数的计算

基金项目: 

中北大学先进制造技术山西省重点实验室开放基金项目(XJZZ201904);教育部产学合作协同育人项目(201902032008);中北大学自然科学研究基金项目(XJJ2016007)

详细信息
    作者简介:

    党长营(1983-),博士,讲师,主要从事无损检测、机器视觉、图像处理等方面的教研工作

    通讯作者:

    李建素, E-mail:jslihongcha@126.com

  • 中图分类号: TN911.73;TG115.28

Calculation of DI and PVI in RT based on Bezier fitting

  • 摘要: 为了进一步论证Bezier拟合对射线检测中焊缝缺陷指数(DI)和峰谷指数(PVI)的重要性和影响特性,系统地分析了Bezier拟合的特点和作用、DI和PVI的定义及计算方法等,以实际的工业焊缝射线检测图像为例,开展了在不同方法下的拟合对比试验和不同缺陷下的DI和PVI计算对比试验。试验结果表明,采用Bezier拟合方法不仅可巧妙地滤除射线检测图像的噪声和局部波动,而且可准确地反映缺陷引起的局部畸变,使DI和PVI的计算更精准。
    Abstract: In order to discuss the importance and influence characteristic of Bezier fitting on welding defect index (DI) and peak-valley index (PVI) in radiographic testing (RT), the characteristic and function of Bezier fitting, definition and computational method of DI and PVI are systematically analysed in this paper. Taking the RT images of industrial weld for example, the comparative computational experiments of DI and PVI under different fitting methods and different defects are carried out. Moreover, the experimental results show that the Bezier fitting method can not only filter the noise and fluctuation skillfully, but also reflect the local distortion caused by the defects accurately,which makes the calculation of DI and PVI more precisely.
  • [1] 党长营,高建民.射线检测缺陷识别方法研究及应用[D].西安:西安交通大学,2016.
    [2] 李建素,党长营,曾志强,等.射线检测图像的自适应多尺度阈值降噪算法[J].无损检测,2018,40(9):22-27.
    [3]

    MOVAFEGHI A.Using empirical mode decomposition and a fuzzy algorithm for the analysis of weld defect images[J].Insight,2015,57(1):35-39.

    [4]

    PETCHER P A,DIXON S.Weld defect detection using PPM EMAT generated shear horizontal ultrasound[J].NDT & E International,2015,74:58-65.

    [5]

    LIAO T W.Classification of welding flaw types with fuzzy expert systems[J].Expert Systems with Applications,2003,25:101-111.

    [6]

    LIAO T W,LI Y.An automated radiographic NDT system for weld inspection:Part Ⅱ-flaw detection[J].NDT&E International,1998,31(3):183-192.

    [7]

    GAYER A,SAYA A,SHILOH A.Automatic recognition of welding defects in real-time radiography[J].NDT International,1990,23(4):131-136.

    [8]

    MERY D,BERTI M A.Automatic detection of welding defects using texture features[J].Insight,2003,45(10):676-681.

    [9]

    DAUM W,ROSE P,HEIDT H,et al.Automatic recognition of weld defects in X-ray inspection[J].British Journal of Non-destructive Testing,1987,29(2):79-82.

    [10]

    SHAO J X,DU D,CHANG B H,et al.Automatic weld defect detection based on potential defect tracking in real-time radiographic image sequence[J].NDT & E International,2012,46:14-21.

    [11]

    LIU J Y,TANG Q J,WANG Y,et al.Defects' geometric feature recognition based on infrared image edge detection[J].Infrared Physics & Technology,2014,67:387-390.

    [12]

    DANG C Y,GAO J M,WANG Z,et al.A novel method of detecting weld defects accurately and reliably in radiographic images[J].Insight,2016,58(1):28-34.

    [13]

    HIDALGO M,SANMIGUEL E,BURGOS M A.Design of cams with negative radius follower using Bezier curves[J].Mechanism and Machine Theory,2014,58:87-96.

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30
  • 刊出日期:  2021-02-09

目录

    /

    返回文章
    返回