• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于U-Net的列车轮对激光曲线提取

杨凯, 罗帅, 王勇, 高晓蓉, 彭建平, 蒋天赐

杨凯, 罗帅, 王勇, 高晓蓉, 彭建平, 蒋天赐. 基于U-Net的列车轮对激光曲线提取[J]. 无损检测, 2021, 43(1): 19-23. DOI: 10.11973/wsjc202101006
引用本文: 杨凯, 罗帅, 王勇, 高晓蓉, 彭建平, 蒋天赐. 基于U-Net的列车轮对激光曲线提取[J]. 无损检测, 2021, 43(1): 19-23. DOI: 10.11973/wsjc202101006
YANG Kai, LUO Shuai, WANG Yong, GAO Xiaorong, PENG Jianping, JIANG Tianci. Laser curve extraction of train wheelset based on U-Net[J]. Nondestructive Testing, 2021, 43(1): 19-23. DOI: 10.11973/wsjc202101006
Citation: YANG Kai, LUO Shuai, WANG Yong, GAO Xiaorong, PENG Jianping, JIANG Tianci. Laser curve extraction of train wheelset based on U-Net[J]. Nondestructive Testing, 2021, 43(1): 19-23. DOI: 10.11973/wsjc202101006

基于U-Net的列车轮对激光曲线提取

详细信息
    作者简介:

    杨凯(1980-),男,博士,主要研究方向为无损检测、数字图像和信号处理算法在铁路安全检测方向的应用

    通讯作者:

    罗帅, E-mail:1830343214@qq.com

  • 中图分类号: TG115.28

Laser curve extraction of train wheelset based on U-Net

  • 摘要: 研究列车轮对条纹图像快速准确提取的方法,采用经典的U-Net网络模型,实现了激光条纹的精确分割,以构建模板的方式对分割后的图像采用灰度重心法达到亚像素的提取。首先利用U-Net网络模型对激光条纹进行分割,然后用模板法初步找到光条中心,最后再使用灰度重心法实现快速、准确的激光曲线提取。结果表明,该方法可以有效地克服动态环境下背景噪声以及亮斑对激光条纹提取带来的影响。
    Abstract: The method for rapid and accurate extraction of fringe images of wheel pairs is studied. The classic U-Net network model is used to achieve precise segmentation of laser stripes, and the gray center of gravity method is used to achieve sub-pixel extraction of the segmented image in the form of a template. Firstly, the U-net network model is used to do laser stripe segmentation, then the template method is used to find the center of the light bar, and finally the gray center of gravity method is used to achieve fast and accurate laser curve extraction. Experimental results show that this method can effectively overcome the effects of background noise and bright spots on laser stripe extraction under dynamic environment.
  • [1] 席剑辉, 包辉.基于改进质心法的激光条纹中心提取算法[J]. 火力与指挥控制, 2019,44(5):149-153.
    [2]

    WANG G, LI W, AERTSEN M, et al. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks[J]. Neurocomputing, 2019, 338(4):34-45.

    [3] 王胜春,韩强,王昊,等.行车环境下钢轨轮廓激光条纹中心的提取方法[J].光学学报,2019,39(2):175-184.
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-28
  • 刊出日期:  2021-01-09

目录

    /

    返回文章
    返回