• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

油气井套管变形段位置及其缺陷的涡流检测

黄华, 徐菲, 罗庆, 周莹, 刘半藤, 黄平捷

黄华, 徐菲, 罗庆, 周莹, 刘半藤, 黄平捷. 油气井套管变形段位置及其缺陷的涡流检测[J]. 无损检测, 2020, 42(10): 40-48. DOI: 10.11973/wsjc202010009
引用本文: 黄华, 徐菲, 罗庆, 周莹, 刘半藤, 黄平捷. 油气井套管变形段位置及其缺陷的涡流检测[J]. 无损检测, 2020, 42(10): 40-48. DOI: 10.11973/wsjc202010009
HUANG Hua, XU Fei, LUO Qing, ZHOU Ying, LIU Banteng, HUANG Pingjie. Eddy current detection of position and defect type of casing deformation section of oil and gas well[J]. Nondestructive Testing, 2020, 42(10): 40-48. DOI: 10.11973/wsjc202010009
Citation: HUANG Hua, XU Fei, LUO Qing, ZHOU Ying, LIU Banteng, HUANG Pingjie. Eddy current detection of position and defect type of casing deformation section of oil and gas well[J]. Nondestructive Testing, 2020, 42(10): 40-48. DOI: 10.11973/wsjc202010009

油气井套管变形段位置及其缺陷的涡流检测

基金项目: 

国家科技重大专项资助项目(2016ZX05017-003);浙江省自然科学基金青年基金项目(LQ19F010012)

详细信息
    作者简介:

    黄华(1969-),男,本科,高级工程师,主要从事生产测井技术研究工作

    通讯作者:

    徐菲, E-mail:zoreraul@126.com

  • 中图分类号: TP393;TG115.28

Eddy current detection of position and defect type of casing deformation section of oil and gas well

  • 摘要: 提出了一种检测油气井套管变形段位置与缺陷类型的涡流检测方法,该方法根据电磁检测成像测井仪输出涡流信号,计算其特征信号及波峰,再采用自适应阈值判别变形段。针对每一个变形段进行差分处理,并将连续多组数据合并构成多层数据,对所有数据进行Fisher降维,选择降维后的多维数据作为特征值。 采用神经网络方法进行样本训练和测试数据的识别,试验结果表明:该涡流检测方法能识别出所有变形段的位置及缺陷类型,具有很好的实际工程应用价值。
    Abstract: A eddy current detection method for position and defect type of casing deformation section of oil and gas well is proposed. According to the eddy current signals outputted by electromagnetic flaw detection imaging tool, the peak and features of signal are calculated, and an adaptive threshold is adopted to judge the deformation section. Differencial method is applied to process each deformation section. Successive groups of data are fusioned into multi-layer data. All data are dimensionally reduced by Fisher algorithm, and the dimensionally reduced multidimensional data are selected as the eigenvalue. The neural network algorithm is used for sample training and test data recognition. The experimental results show that the algorithm can identify the location of different deformation sections and the defect types in the deformation sections. The algorithm has certain practical value for applications.
  • [1] 刘成, 张治华, 王宝剑. 鹰眼Ⅱ 井下视像系统在井筒检测中的应用[J]. 吐哈油气, 2004, 9(1):71-73.
    [2] 李刚, 朱广亮, 王永康, 等. 多臂井径成像测井技术及在克拉玛依油田的应用[J].新疆石油地质, 2011, 32(2):190-192.
    [3]

    TAMBURRINO A,VENTRE S,FERRIGNO L, et al. Characterization and implementation of a GMR based probe for eddy current testing[J]. International Journal of Applied Electromagnetics and Mechanics, 2008, 28(1/2):329-336.

    [4] 陈嘉辉, 李志强, 张文辉. 多分量瞬变电磁法套损检测系统[J]. 电子测试, 2015(19):4-5.
    [5] 张荣华, 刘珊, 张牧, 等. 基于空间分布熵的电磁脉冲涡流无损检测方法[J]. 仪器仪表学报, 2015, 36(4):804-811.
    [6]

    ZHU P, YIN C, CHENG Y, et al. An improved feature extraction algorithm for automatic defect identification based on eddy current pulsed thermography[J]. Mechanical Systems and Signal Processing, 2018, 113(12):5-21.

    [7] 梁子千, 玄文博, 王婷, 等. 基于二维阻抗特征的管道环焊缝缺陷涡流检测[J]. 仪器仪表学报, 2017, 38(9):2138-2145.
    [8]

    HUANG Pingjie, DING Tianyu, LUO Qing,et al. Defect localisation and quantitative identification in multi-layer conductive structures based on projection pursuit algorithm[J]. Nondestructive Testing and Evaluation, 2019, 34(1):70-86.

    [9] 唐高峰, 万舟, 刘东生, 等. 基于电涡流传感器的油罐车内部缺陷检测[J]. 腐蚀与防护, 2017, 38(4):316-321.
    [10] 余剑武, 罗嗣春, 徐涛, 等. 超细硬质合金棒材缺陷电涡流检测系统研发[J]. 传感技术学报, 2016, 29(5):637-641.
    [11]

    HE M, LI W, ZHENG W, et al. Study on a combined NDT method based on ACFM and eddy current thermography[J].Nondestructive Testing and Evaluation, 2019, 34(2):147-163.

    [12] 刘素贞, 孟学艳, 张闯, 等. 金属材料缺陷的电磁超声/涡流复合检测技术研究[J]. 声学技术, 2018, 37(1):43-50.
    [13] 王少平, 王增国, 刘金海, 等. 基于三轴漏磁与电涡流检测的管道内外壁缺陷识别方法[J]. 控制工程, 2014, 21(4):572-578.
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 刊出日期:  2020-10-09

目录

    /

    返回文章
    返回