On-line detection of lubricating oil wear debris based on optical low coherence imaging
-
摘要: 航空发动机的健康状态监测一直是研究热点,而发动机滑油系统中的磨屑则是其重要的监测对象。提出了一种利用光学低相干技术对磨屑实时成像,再通过实时图像处理来检测流动磨屑的方法。通过搭建光学层析系统和滑油循环回路对磨屑进行成像,通过改进的轮廓检测算法识别出图像里磨屑的当前轮廓,将连续有序的轮廓按照流动方向连接重构,获得了磨屑的表面形貌和相关特征量。结果表明,所搭建的光学层析系统能够检测到流动的磨屑,并能对其实时成像,且通过图像处理能反映出整个磨屑的尺寸和形貌。Abstract: Health status monitoring of aero engines has always been one of the research hotpots, and the wear debris in the engine oil system is an important monitoring object. In this paper, a method for real-time imaging of wear debris using optical low coherence technology and real-time image processing to detect wear debris in the flowing oil is proposed. An optical tomography system and a lubricating oil circulation loop is built to image the wear debris and the current profile of the wear debris in the image is identified by an improved contour detection algorithm. The continuous ordered contour is reconstructed according to the flow direction to obtain the surface morphology and related features of the wear debris. The results show that the optical tomography system can detect flowing debris and can image it in real time, and the image processing can reflect the size and shape of the entire wear debris.
-
Keywords:
- oil wear debris /
- optical low coherence /
- online detection /
- image processing
-
-
[1] DEMPSEY P J, CERTO J M, MORALESW. Current status of hybrid bearing damage detection[J]. Tribology Transactions, 2004, 48(3):370-376.
[2] 杨成, 宋轩. 油液监测技术发展探讨[J]. 液压气动与密封, 2008, 28(1):11-12. [3] 孙衍山, 杨昊,佟海滨,等.航空发动机滑油磨屑在线监测[J].仪器仪表学报,2017,38(7):1561-1569. [4] 郭毅斐, 张晓钟, 孟凡芹. 航空油液在线监测技术综述[J]. 化工自动化及仪表, 2017,44(11):4-9. [5] 冯伟, 陈闽杰,贺石中.油液在线监测传感器技术[J].润滑与密封,2012,37(1):99-104. [6] ROYLANCE B J, RAADNUI S. The morphological attributes of wear particles-their role in identifying wear mechanisms[J].Wear,1994,175(1/2):115-121.
[7] RAADNUI S. Wear particle analysis-utilization of quantitative computer image analysis:A review[J]. Tribology International, 2005, 38(10):871-878.
[8] WU Tonghai, WU Hongkun, DU Ying, et al. Progress and trend of sensor technology for on-line oil monitoring[J]. Science China, 2013, 56(12):2914-2926.
[9] LI G, GUAN D. Study on characteristic parameters of wear particle boundary[J]. European Physical Journal Applied Physics, 2010, 52(2):64-69.
[10] 郝延龙, 潘新祥, 严志军, 等. 基于显微图像的在线润滑油中磨粒分析方法[J]. 润滑与密封, 2016,41(5):59-64.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 2