Nonlinear guided wave detection of fatigue damage of aluminum alloy plate
-
摘要: 针对传统线性超声检测技术无法检测疲劳微损伤的问题,提出了疲劳微裂纹的非线性超声导波检测技术。首先,通过检测信号时频分布与频散曲线的对比分析,确定了铝板中的Lamb波模态,据此优化试验参数,并在板中激发单一模态的兰姆波;其次,通过试验方法判断该模态Lamb波的非线性响应条件,确定该模态在激励微裂纹疲劳损伤上的实用性;第三,提取了非线性超声检测特征参数,分析了各特征参数随疲劳周数的变化关系。结果表明:铝板中的兰姆波频散特性会导致基频幅值波动较大,非线性系数随基波变化无法反映真实的微裂纹非线性响应;二次谐波幅值在疲劳损伤初期随着疲劳周数的增大而增大,可用于评价缺陷的微观损伤。Abstract: In view of the problem that the traditional linear ultrasonic detection technology cannot detect fatigue micro cracks, a nonlinear ultrasonic guided wave detection technology for fatigue micro cracks is proposed. Firstly, the Lamb wave mode in the aluminum plate was determined by comparing the detection of signal time-frequency distribution with the calculation of dispersion curve, and then the experimental parameters were optimized and a single mode Lamb wave was excited in the plate. Secondly, the nonlinear response conditions of the mode Lamb wave were determined by the experimental method to determine the practicability of the mode in excitation of micro-crack fatigue damage. Thirdly, the characteristic parameters of nonlinear ultrasonic detection were extracted and the relationship between the characteristic parameters and fatigue cycle number was analyzed. The results show that the dispersion characteristic of Lamb wave in aluminum plate leads to a large fluctuation of fundamental frequency amplitude, and the nonlinear coefficient cannot reflect the true nonlinear response of micro cracks. The second harmonic amplitude increases with the increase of fatigue cycle in the early stage of fatigue damage.
-
-
[1] 吴斌,颜丙生,何存富,等.脉冲反转技术在金属疲劳损伤非线性超声检测中的应用[J].声学技术,2010,29(5):489-493. [2] 赵娜. 金属疲劳微损伤的非线性超声检测技术研究[D].太原:中北大学,2015. [3] ZHAO J L, CHILLARA V K, REN B Y,et al. Second harmonic generation in composites:Theoretical and numerical analyses[J]. Journal of Applied Physics, 2016, 119:1-14.
[4] HERRMANN J, KIM J Y, JACOBS L J, et al. Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves[J].Journal of Applied Physics, 2006,99(12):124913.
[5] 邓明晰,裴俊峰.无损评价固体板材疲劳损伤的非线性超声兰姆波方法[J].声学学报(中文版),2008,33(4):360-369. [6] RAO V V S J, KANNAN E, PRAKASH R V, et al. Observation of two stage dislocation dynamics from nonlinear ultrasonic response during the plastic deformation of AA7175-T7351 aluminum alloy[J]. Materials Science & Engineering A, 2009, 512(1/2):92-99.
[7] 周正干,冯海伟.超声导波检测技术的研究进展[J].无损检测,2006,28(2):57-63. [8] 李剑,刘松平.铝板中Lamb波模式识别方法[J].无损检测,2008,30(12):872-876. [9] 陈振华,卢超,陆铭慧,等.基于声-超声检测的薄钢板多焊点结构完整性评价技术[J].机械工程学报,2013,49(16):57-61. [10] 方杨. 铝板中的兰姆波检测技术和非线性调频小波变换时频分析方法研究[D].上海:上海交通大学,2012. [11] 胡昌华,周涛,夏启兵,等.基于matlab的系统分析与设计——时频分析[M].西安:西安电子科技大学出版社,2002. [12] BREAZEALE M A, FISCHER M. Ultrasonic measurement of third-order elastic constants of fused silica[J]. The Journal of the Acoustical Society of America, 1980, 67(S1):55-56.
[13] 刘镇清,他得安.用二维傅里叶变换识别兰姆波模式的研究[J].声学技术,2000,19(4):212-214,219. [14] 周正干,刘斯明.非线性无损检测技术的研究、应用和发展[J].机械工程学报,2011,47(8):2-11. [15] 李飞龙. 材料早期损伤的非线性Lamb波检测机理研究[D].重庆:重庆大学,2018. [16] 朱金林,刘晓宙,周到,等.声波在有裂纹的固体中的非经典非线性传播[J].声学学报(中文版),2009,34(3):234-241. [17] YE J L, GANG T. Ultrasonic nonlinear imaging in diffusion bonding of 304 stainless steel[J]. Transactions of the China Welding Institution, 2014, 35(5):95-99.
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 1