Finite element analysis of thermal loading laser shearography testing forquartz fiber composite materials
-
摘要: 在石英纤维增强树脂基复合材料平板上钻直径和深度不同的盲孔,模拟材料内部的孔洞缺陷。以单个盲孔缺陷为研究对象,建立尺寸为100 mm×100 mm×6 mm(长×宽×厚)的分析模型,采用顺序耦合热应力分析方法,对复合材料热加载激光剪切散斑检测进行有限元分析,研究了加载载荷、加热时间、冷却时间以及盲孔缺陷直径和深度对激光剪切散斑检测信号的影响规律。结果表明,增大加载载荷和增加加热时间能够有效提高缺陷的检测效果;延长冷却时间并不能提高缺陷的检测效果,降低了检测效率。盲孔缺陷直径越大,深度越小,越容易被检测出来;不同深度的φ5 mm盲孔缺陷均无法被有效识别。Abstract: Quartz fiber reinforced resin matrix composites drilled with the blind holes of various diameters and various depths were prepared in order to simulate defects of air voids or delaminations under the surface of the material. Taking the single blind hole as the research object, the analysis model of 100 mm×100 mm is established. Finite element analysis of thermal loading laser shearography testing for composite materials was carried out by sequential coupled thermal stress analysis method. The influence of thermal loading, heating time, cooling time and the diameter and depth of blind holes on the signal of laser shearography testing was studied. The results indicate that increasing thermal loading and heating time can effectively improve defects detection effect; extending the cooling time cannot improve the defects detection effect, but reduces the detection efficiency. The bigger diameter and the smaller depth of blind hole, the easier the defect is to be detected, the blind holes of 5 mm diameter with different depths cannot be effectively identified.
-
Keywords:
- composite material /
- laser shearography /
- thermal loading /
- finite element analysis
-
-
[1] 张立功,张佐光.先进复合材料中主要缺陷分析[J].玻璃钢/复合材料,2001(2):42-45. [2] STASZEWSKI W J. Intelligent signal processing for damage detection in composite materials[J]. Composites Science and Technology, 2002, 62:941-950.
[3] COSTA M L, ALMEIDA S F M, REZENDE M C. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates[J]. Composites Science and Technology, 2001, 61(14):2101-2108.
[4] KAS Y O, CEVDET K. Ultrasonic (C-scan) and microscopic evaluation of resin transfer molded epoxy composite plates[J].Polymer Testing, 2005, 24(3):114-120.
[5] 蒋淑芳,沈京玲,杨党纲,等.铝蜂窝胶接缺陷的红外热波无损检测[J].无损检测,2006,28(1):23-25. [6] 杨宝刚.复合材料的射线检测技术[J].宇航材料工艺,2004(2):26-28. [7] 计宏伟,邵文全,李砚明,等.蜂窝纸板脱胶缺陷的检测[J].包装工程,2009,30(2):105-106. [8] 张旭刚,张素香,程旭,等.层压结构复合材料的激光剪切散斑检测[J].无损检测,2014,36(7):56-59. [9] 张坚,耿荣生.飞机复合材料的现场电子剪切散斑检测技术[J].信息与控制,2010,39(1):88-92. [10] 郭广平,刘永斌,王钰,等.蜂窝结构的剪切散斑无损检测技术[J].无损检测,2004,26(12):605-608. [11] 李慧娟,帅家盛.基于激光剪切散斑技术的蜂窝夹层结构检测[J].无损检测,2009,38(增刊):324-329. [12] 李慧娟,张京焘,黄振华.激光剪切散斑方法对脱粘缺陷的定量测量[J].宇航材料工艺,2011(5):89-92. [13] 程文,张宏菊.激光剪切散斑检测技术在飞机复合材料检测中的应用[J].青岛大学学报(工程技术版),2012,27(4):80-83. [14] 周莉,孙建罡,邵红亮,等. 影响蜂窝结构激光剪切散斑检测灵敏度的参数[J].无损检测,2015,37(6):33-36. [15] 郭广平.计算机模拟技术在错位散斑干涉法中的应用[J].机械工程学报,2001,37(11):103-105. [16] 贾晓艳,马铁军.结构参数对蜂窝复合材料错位散斑检测结果的影响[J].无损检测,2015,37(4):14-18. [17] 涂俊.蜂窝夹层结构的激光错位散斑检测技研究[D].南昌:南昌工业大学,2011. [18] 郭孝欢,孙法亮.激光错位散斑检测结果的影响因素[J].无损检测,2018,40(3):39-44. [19] 侯日立,郑立胜.复合材料激光错位散斑检测的数值模拟研究[J].纤维复合材料,2013(3):10-13.
计量
- 文章访问数: 2
- HTML全文浏览量: 0
- PDF下载量: 3