Progress of Infrared Testing Technology
-
摘要: 红外无损检测(IRT)技术作为一种新的检测方法,可以检测材料、构件的内部缺陷,评估材料的应力状态以及实现疲劳寿命的快速预测,对设备进行运行状态监测和故障诊断。简述了IRT技术的基本原理,从缺陷检测、应力检测、疲劳分析、图像处理、检测监测应用等方面阐述了国内外IRT技术的研究以及应用现状。介绍了国内外IRT检测设备和检测标准、技术应用情况,并指出了该检测技术的发展趋势。Abstract: As a new inspection method, infrared non-destructive testing (IRT) technology can detect the internal defects of materials and components, evaluate the stress state of materials and achieve rapid prediction of fatigue life, and monitor the operating status and diagnose faults of equipment. This article briefly describes the basic principles of IRT technology, and elaborates the research and application status of IRT technology at home and abroad from the aspects of defect detection, stress detection, fatigue analysis, image processing, and testing and monitoring application. The relevant testing equipment and testing standards, applications of the testing technology at home and abroad were introduced and its development trend was also pointed out.
-
Keywords:
- infrared testing /
- infrared imaging /
- nondestructive testing /
- stress /
- fatigue
-
-
[1] 王汝琳. 红外检测技术[M]. 北京:化学工业出版社, 2006. [2] BALAGEAS D. Defense and illustration of time-resolved pulsed thermography for NDE[J]. Quantitative Infrared Thermography Journal, 2012, 9(1): 3-32.
[3] MEOLA C, CARLOGAGNO G M, SQUILLACE A, et al. Vitiello non-destructive evaluation of aerospace materials with lock-in thermography[J]. Engineering Failure Analysis, 2006, 13(3): 380-388.
[4] CHATTERJEEA K, TULIA S, SIMON G, et al. A comparison of the pulsed, lock-in and frequency modulated thermography nondestructive evaluation techniques[J]. NDT & E International, 2011, 44(7):655-667.
[5] MUNOZ V, VALES B, PERRIN M, et al. Coupling infrared thermography and acoustic emission for damage study in CFRP composites[J]. Composites Part B: Engineering, 2016, 2(85):68-75.
[6] BALAGEAS D, MALDAGUE X, BURLEIGH D, et al. Thermal (IR) and other NDT techniques for improved material inspection[J]. Journal of Nondestructive Evaluation,2016, 35(18):1-17.
[7] PSUJ G, SZYMANIK B. Fatigue monitoring of steel structures using electromagnetic and infrared thermography inspection methods[J]. Przegla Elektrotechniczny, 2016, 92:5-8.
[8] TSUJI A, NAGANO H. Measurement of in-plane thermal diffusivity of carbon composites by periodic heating method using lock-in thermography[C]//Transactions of the JSME (in Japanese). Japan: The Japan Society of Mechanical Engineers, 2017.
[9] EKANAYAKE S, BALDO C, FERNANDES T, et al. CT applied as a reference technique for evaluating lock-in thermography in characterizing CFRP impact damage test samples[C]//7th Conference on Industrial Computed Tomography. Belgium:[s.n.],2017.
[10] KOCHANOWSKI K, OLIFERUK W, PŁOCHOCKI Z, et al. Determination of thermal diffusivity of austenitic steel using pulsed infrared thermography[J]. Archives of Metallurgy & Materials, 2014, 59(3):893-897.
[11] SEKHARBABU R, RAFI H K, RAO K P. Characterization of D2 tool steel friction surfaced coatings over low carbon steel[J]. Materials & Design, 2013, 50(17):543-550.
[12] 严园, 邹兰林, 周兴林. 钢桥疲劳裂缝的红外热成像无损检测[J]. 应用科学学报,2016,34(1):106-114. [13] HAJ-ALI A R,WEI B S, JOHNSON S, et al. Thermoelastic and infrared-thermography methods for surface strains in cracked orthotropic composite materials[J]. Engineering Fracture Mechanics, 2008, 75:58-75.
[14] EMERY T R, DULIEU-BARTON J M, EARL J S. A generalised approach to calibration of orthotropic materials for thermoelastic stress analysis[J]. Composites Science and Technology, 2008, 68:743-752.
[15] KUTIN M, RISTI S, PUHARI M. Thermographic testing of epoxy-glass composite tensile properties[J]. Contemporary Materials,2011,1:88-93.
[16] BRÉMOND P. New developments in thermo elastic stress analysis by infrared thermography[J]. Buenos Aires, 2007, 10:1-11.
[17] SURESH S. 材料的疲劳[M]. 北京:国防工业出版社, 1999. [18] LAROSA G, RISITANO A. Thermographic methodology for rapid determination of fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22:65-73.
[19] MICHAL Š, PETRA H, JOSEF V. Active thermography in materials fatigue testing[C]//Metal-international Conference on Metallurgy & Materials. Czech Republic:[s.n.], 2015.
[20] LUONG M P. Fatigue limit evaluation of metals using an infrared thermographic technique[J]. Mechanics of Materials, 1998, 28: 155-163.
[21] CRUPI V,CHIOFALO G, GUGLIELMINO E. Using infrared thermography in low-cycle fatigue studies of welded joints[J]. Welding Journal, 2010, 89: 195-200.
[22] WANG X G, CRUPI V, GUO X L. Quantitative thermographic methodology fatigue assessment and stress measurement[J]. International Journal of Fatigue, 2010, 32: 1970-1976.
[23] MOUMNI Z, ZAKI W, NGUYEN Q S. Theoretical and numerical modeling of solid-solid phase change: Application to the description of the thermomechanical behavior of shape memory alloys[J]. International Journal of Plasticity, 2008, 24(4):614-645.
[24] 李国华, 吴立新, 吴淼, 等. 红外热像技术及其应用的研究现状与发展[J].红外与激光工程, 2004, 33(3):227-230. [25] HUDA A S N, TAIB S. Application of infrared thermography for predictive/preventive maintenance of thermal defect in electrical equipment[J]. Applied Thermal Engineering, 2013, 61(2):220-227.
[26] KORDATOS E Z, EXARCHOS D A, STAVRAKOS C, et al. Infrared thermographic inspection of murals and characterization of degradation in historic monuments[J]. Construction & Building Materials, 2013, 48(19):1261-1265.
[27] LUONG M P. Introducing infrared thermography in soil dynamics[J]. Infrared Physics & Technology, 2007, 49(3):306-311.
[28] MEOLA C, BOCCARDI S, CARLOMAGNO G M, et al. Learning more on thermoplastic composites with infrared thermography[C]//19th World Conference on Non-destructive Testing. Germany: Curran Associates Inc., 2016.
[29] SAHU P K, MORDECHAI S. Fourier transform infrared spectroscopy in cancer detection[J]. Future Oncology, 2005, 9(22):635-647.
[30] MEOLA C, CARLOMAGNO G M, GIORLEO L. The use of infrared thermography for materials characterization[J]. Journal of Materials Processing Technology, 2004,155(1):1132-1137.
[31] 张金玉, 马永超. 基于红外锁相法的涂层脱粘缺陷检测与识别[J]. 红外技术, 2016, 38(10):894-898. [32] 沈功田, 李涛, 姚泽华, 等. 高温压力管道红外热成像检测技术[J]. 无损检测, 2002, 24(11):473-477. [33] 霍雁, 赵跃进, 李艳红, 等. 脉冲和锁相红外热成像检测技术的对比性研究[J].激光与红外, 2009, 39(6):602-604. [34] 寇蔚,孙丰瑞,杨立.正弦规律加热条件下的缺陷红外故障响应[J].红外与激光工程,2007,36(4):472-474. [35] 李艳红, 赵跃进, 冯立春. 等. 基于脉冲位相的红外热波无损检测法测量缺陷深度[J].光学精密工程, 2008, 16(1):55-58. [36] 武翠琴, 洪新华, 王卫平, 等. 复合材料脱粘缺陷的红外热像无损检测[J].强激光与粒子束, 2011, 23(12): 3271-3274. [37] 周正干, 贺鹏飞, 赵翰学, 等. 钛合金蜂窝结构蒙皮脱焊缺陷锁相红外热成像检测[J]. 北京航空航天大学学报, 2016, 42(9):1795-1802. [38] 梁旗. 基于红外热图像电力设备热故障的自动诊断[J]. 电脑知识与技术, 2008(6):132-140. [39] 沈功田, 张万岭. 压力容器无损检测——红外热成像检测技术[J]. 无损检测, 2004, 26(10):523-528. [40] 沈功田, 吴彦, 李涛, 等. 热弹性红外成像检测技术在石油液化气储罐检测中的应用[C]//苏州无损检测国际会议无损检测学术会议.苏州:[出版者不详] 2003. [41] 曾伟, 韩旭, 丁桦, 等. 基于红外热象技术的金属材料疲劳性能研究方法[J]. 机械强度, 2008, 30(4):658-663. [42] 吕宝西. 基于红外热成像U71Mn钢轨疲劳裂纹扩展的试验研究[D].大连: 大连理工大学,2014. [43] 魏凌霄, 闫志峰, 王文先, 等. 基于红外热成像的镁合金疲劳裂纹扩展的研究[J]. 机械工程学报, 2012, 48(6):64-69. [44] 李萌, 李旭东, 张辉, 等. 基于锁相红外热成像技术对铝合金铆接结构件疲劳极限的快速测定[J]. 工程力学, 2012, 29(12):28-33. [45] 张传豹. 基于热像法的金属疲劳性能分析[D]. 大连:大连理工大学,2010. [46] 李旭东,刘勋,马渊,等.锁相红外热成像技术测量结构的应力分布[J].工程力学,2011,28(11):218-222. [47] 顾桂梅, 黄涛. 基于ANSYS的钢轨疲劳裂纹深度红外热波定量测量研究[J]. 兰州交通大学学报, 2013, 32(6):63-66. [48] 樊俊铃, 郭杏林, 赵延广, 等. 定量热像法预测焊接接头的S-N曲线和残余寿命[J]. 材料工程, 2011(12):29-33. [49] 秦雷, 刘俊岩, 龚金龙, 等. 超声红外锁相热像技术检测金属板材表面裂纹[J]. 红外与激光工程, 2013, 42(5):1123-1130. [50] 刘俊岩, 戴景民, 王扬. 红外锁相法热波检测技术及缺陷深度测量[J].光学精密工程,2010,18(1):37-44. [51] 郭兴旺, 李彬. 重型铝合金结构裂纹振动红外热像检测的建模和分析[J]. 机械工程学报, 2014, 50(24):31-37. [52] 张金玉, 孟祥兵, 杨正伟. 红外锁相法涂层测厚数值模拟与分析[J]. 红外与激光工程,2015,44(1):6-11. [53] 秦翰林, 李佳, 周慧鑫, 等. 采用剪切波变换的红外弱小目标背景抑制[J]. 红外与毫米波学报, 2011, 30(2):162-166. [54] ZHOU Z, ZHAO H, SUN G, et al. Inspection ofdisbonds in multilayer dissimilar metal structure using lock-in thermography[J]. Applied Optics, 2016, 55(16):4490-4496.
[55] 李宇光, 刘明光. 电机故障检测的小波分析红外图像增强[J]. 计算机工程与应用,2013,49(11):241-243. [56] 康长青, 张其林, 郑毅, 等. 基于中间均衡直方图的红外图像非均匀性校正[J]. 激光与红外, 2013, 43(11):1240-1242. [57] 李大鹏, 孙丰瑞. 机电设备红外故障诊断的可诊性研究[J]. 机电工程, 2004, 21(7):44-48. [58] 于泽奇. 红外热成像技术在轮机故障诊断中的应用[D]. 大连: 大连海事大学, 2013. [59] 李明, 林翠, 李晓刚, 等. 红外热像技术在线评估高温炉管剩余寿命[J]. 机械工程学报, 2004, 40(12):139-144. [60] 叶超, 沈功田, 张万岭, 等. 游乐设施红外热像特征[J]. 无损检测, 2012, 34(3):12-14. [61] 杨振中, 楚书华, 李径定. 基于红外光谱的汽车废气排放诊断技术[J]. 机械工程学报, 2000, 36(4):5-8. [62] 杨为锦, 孙强.中波红外连续变焦系统设计[J]. 中国光学, 2010, 3(2):164-169. [63] 张莹昭, 白玉琢, 丁黎梅, 等. 折射/衍射长焦距红外系统的设计[J]. 红外技术, 2010, 32(6):315-319. [64] 汪子君, 刘俊岩, 戴景民, 等. 红外热成像无损检测系统建立与试验分析[J]. 哈尔滨理工大学学报, 2011, 16(2):20-23. [65] 沈功田, 胡斌, 徐永昌, 等. 中国无损检测2025科技发展战略[M]. 北京:中国质检出版社,中国标准出版社,2017. [66] 沈功田, 贾国栋, 钱剑雄. 特种设备安全与节能2025科技发展战略[M]. 北京:中国质检出版社,中国标准出版社,2017.
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 3