Acoustic emission signals recognition for rolling bearing fault based on GA-IDBN
-
摘要: 针对变工况条件下的滚动轴承故障声发射信号识别问题,提出了一种基于遗传算法(Genetic Algorithm,GA)与改进深度信念网络(Improved Deep Belief Network,IDBN)结合的故障检测与诊断新方法。对滚动轴承故障声发射监测信号的分析结果表明,GA-IDBN模型对滚动轴承的外圈、内圈、保持架故障的声发射监测信号的识别准确率明显优于DBN (深度信念网络)、支持向量机等模型的,识别准确率可达到95.5%;并且,GA-IDBN模型具有很强的普适性,可以识别出滚动轴承在不同通道、不同转速情况下的运行状态。证明了GA-IDBN模型具有很强的工程实用价值。Abstract: A new method of fault diagnosis and detection based on GA and IDBN is proposed to identify the acoustic emission signals of rolling bearing faults under variable working conditions. The experimental results show that the GA-IDBN model is superior to the original deep belief network and support vector machine model in the recognition accuracy of the acoustic emission monitoring signals of the outer ring fault and the inner ring fault and cage fault of rolling bearings.And the accuracy can reach more than 95.5%. Moreover, GA-IDBN model is universal, and can recognize the running state of different channel and speed. It is proved that GA-IDBN model has a strong practical value in engineering.
-
-
[1] OCAK H, LOPARO K A. HMM-based fault detection and diagnosis scheme for rolling element bearings[J]. Journal of Vibration and Acoustics, 2004, 127(4): 299-306.
[2] 喻洋洋, 周凤星, 严保康. 基于LabVIEW的滚动轴承故障诊断系统[J]. 仪表技术与传感器, 2016(3): 74-76, 85. [3] 沈书乾, 李海三. 储罐声发射检测信号的聚类分析[J]. 无损检测, 2014, 36(9): 54-58. [4] 常丽, 赵若君. 基于声发射的风机轴承故障诊断研究[J]. 仪表技术与传感器, 2017(9): 109-113. [5] 李学军, 廖传军, 褚福磊. 适于声发射信号故障特征提取的小波函数[J]. 机械工程学报, 2008, 44(3): 177-181. [6] 郭福平, 沈书乾, 段志宏, 等. 基于包络谱分析的滚动轴承故障声发射诊断研究[J]. 中国测试, 2015, 41(8): 94-98. [7] 韩龙. 风力齿轮箱轴承故障的AE信号特征提取与诊断方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [8] 李卿, 邵华, 陈群涛, 等. 基于独立分量分析的切削声发射源信号分离[J].工具技术,2011,45(6):35-39. [9] 赵元喜, 胥永刚, 高立新, 等. 基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术[J]. 振动与冲击, 2010, 29(10): 162-165, 257. [10] 崔宝珍, 王泽兵, 潘宏侠. 小波分析-模糊聚类法用于滚动轴承故障诊断[J]. 振动.测试与诊断, 2008, 28(2): 151-154. [11] 何沿江, 齐明侠, 罗红梅. 基于ICA和SVM的滚动轴承声发射故障诊断技术[J]. 振动与冲击, 2008, 27(3):150-153. [12] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co- adaptation of feature detectors [J]. Statistics, 2012, 3(4): 212-223.
[13] 马永杰, 云文霞. 遗传算法研究进展[J]. 计算机应用研究, 2012, 29(4):1202-1210. [14] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
计量
- 文章访问数: 1
- HTML全文浏览量: 0
- PDF下载量: 3