高级检索

    磁声发射励磁器的仿真分析

    Simulation analysis of magneto acoustic emission exciter

    • 摘要: 磁声发射是一种新型的无损检测技术,磁化强度是影响磁声发射信号强弱的主要因素之一。针对磁声发射磁化装置功率放大器放大倍数以及线圈的安匝数和磁路一定的情况下,不同尺寸的U型磁轭对Q235钢试样磁化效果不同的问题,利用ANSYS Maxwell电磁场仿真软件对不同尺寸U型磁轭进行有限元仿真,分析了线圈的不同缠绕方式对试样磁化效果的影响,以求得励磁效果最优的磁轭尺寸。根据仿真结果得出以下结论:磁极间距越小,产生的磁场强度越强,Q235钢试样磁化效果越好;Q235钢试样的磁化效果随磁极厚度的增加先增大后减小;线圈缠绕方式对Q235钢试样的磁化效果无影响。

       

      Abstract: Magneto acoustic emission (MAE) is a new nondestructive testing technology. Magnetization is one of the main factors affecting the intensity of MAE signal. Therefore, the magnetization effect of different size U-yoke on Q235 sample is different when the amplification factor of power amplifier of magneto acoustic emission magnetization device and the ampere turn number and magnetic circuit of coil are fixed. Using ANSYS Maxwell electromagnetic field simulation software, the finite element simulation of U-yoke with different sizes is carried out, and the influence of different winding modes of coils on the magnetization effect of the sample is analyzed, in order to find out the optimal size of the yoke. According to the simulation results, the smaller the distance between magnetic poles, the stronger the magnetic field produced, and the better the magnetization effect of Q235 sample. The magnetization effect of Q235 sample increases first and then decreases with the increase of the thickness of magnetic poles, and hence conclusion is drawn that winding mode has no effect on the magnetization effect of Q235 sample is drawn.

       

    /

    返回文章
    返回