高级检索

    多传感器钢筋锈蚀无损检测数据的机器学习

    Multi-sensorial corrosion nondestructive testing data of concrete with machine learning

    • 摘要: 在对多传感器无损检测数据进行自动评估的过程中,由于数据本身的复杂性高,所以传统算法的计算效率及准确性低下。基于多传感器钢筋混凝土锈蚀试验所得的无损检测数据,设计了基于逻辑回归算法的决策树算法及Boosting模型,并将其结果与基本的逻辑回归算法的结果进行量化、比较和分析。结果表明:与通过小型异构数据集训练出的具有复杂决策边界的决策树算法相比,简单稳健的逻辑回归算法得到的分类效果更优,而通过Boosting模型可以进一步改善逻辑回归算法分类效果并实现数据的自动评估。

       

      Abstract: Aiming at the problem of poor detection performance caused by the complexity of multi-sensor data in automatic data evaluation, we design the function models of decision tree and Boosting based on machine learning. The experiments are implemented with Non-destructive Testing (NDT) data obtained from the multi-sensor detection of the corroded reinforced concrete. And the results are compared with the relatively simple logistic regression algorithm. It demonstrates that the simple and robust logistic regression algorithm is superior to the decision tree algorithm with complex decision boundaries trained by small heterogeneous data sets. However,Boosting can be used to improve detection and the corrosion analysis of reinforced concrete.

       

    /

    返回文章
    返回