• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

一种基于均匀稀疏采样的Lamb波场重构方法

骆英, 周杨, 李鹏飞, 徐晨光

骆英, 周杨, 李鹏飞, 徐晨光. 一种基于均匀稀疏采样的Lamb波场重构方法[J]. 无损检测, 2019, 41(9): 28-32,38. DOI: 10.11973/wsjc201909007
引用本文: 骆英, 周杨, 李鹏飞, 徐晨光. 一种基于均匀稀疏采样的Lamb波场重构方法[J]. 无损检测, 2019, 41(9): 28-32,38. DOI: 10.11973/wsjc201909007
LUO Ying, ZHOU Yang, LI Pengfei, XU Chenguang. A Lamb Wavefield Recovery Method Based on Uniform Sparse Sampling[J]. Nondestructive Testing, 2019, 41(9): 28-32,38. DOI: 10.11973/wsjc201909007
Citation: LUO Ying, ZHOU Yang, LI Pengfei, XU Chenguang. A Lamb Wavefield Recovery Method Based on Uniform Sparse Sampling[J]. Nondestructive Testing, 2019, 41(9): 28-32,38. DOI: 10.11973/wsjc201909007

一种基于均匀稀疏采样的Lamb波场重构方法

基金项目: 

国家自然科学重点国际合作项目(11520101001);江苏省研究生培养创新工程项目(KYCX17_1756)

详细信息
    作者简介:

    骆英(1960-),男,博士,教授,主要从事新型无损检测技术及传感器机理研究方面的工作

    通讯作者:

    骆英, E-mail:luoying@mail.ujs.edu.cn

  • 中图分类号: TG115.28

A Lamb Wavefield Recovery Method Based on Uniform Sparse Sampling

  • 摘要: 为了提高研究区域内Lamb波场的获取效率,提出了一种均匀稀疏采样策略,结合压缩感知理论,通过扫描式激光多普勒测振仪拾取的少量测点信号重构出待测波场,并对含人工损伤的铝板进行了试验验证。结果表明:提出的方法可在空间上将测点数减少至传统Nyquist采样点数的90%以上,并得到与原始波场相干性较高的重构波场,同时实现对结构损伤的定位和成像;研究结果可极大地提高基于波场分析的损伤检测技术的执行效率。
    Abstract: A uniform sparse sampling strategy is proposed to improve the acquisition efficiency of the Lamb wavefield of the ROI. The proposed method can recover the guided wavefield of the ROI from a small number of measured signals picked up by the scanning laser Doppler vibrometer using the compressive sensing theory. The experiment is carried out in an aluminum plate with an artificial damage to verify the recovered quality of this method. The experimental results show that the proposed method can reduce the number of measuring points by more than 90% of the traditional Nyquist sampling points in space, and obtain the recovered wavefield with a high coherence coefficient with the original wavefield, and the same time it can realize the positioning and imaging of the structural damage. The research results can greatly improve the efficiency of the damage detection technologies based on the Lamb wavefield analysis.
  • [1] 刘增华, 冯雪健, 陈洪磊, 等. 基于波数分析的激光Lamb波缺陷检测试验研究[J]. 机械工程学报, 2018, 54(18):23-32.
    [2]

    LEMISTRE M, BALAGEAS D. Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing[J]. Smart Materials and Structures, 2001, 10(3):504-511.

    [3]

    SIKDAR S, BANERJEE S, ASHISH G. Ultrasonic guided wave propagation and disbond identification in a honeycomb composite sandwich structure using bonded piezoelectric wafer transducers[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(13):1767-1779.

    [4]

    CASTELLINI P, ESPOSITO E, MARCHETTI B, et al. New applications of Scanning Laser Doppler Vibrometry (SLDV) to non-destructive diagnostics of artworks:mosaics, ceramics, inlaid wood and easel painting[J]. Journal of Cultural Heritage, 2003, 4:321-329.

    [5]

    ZHOU Z, SUN G, BAOQUAN M A, et al. Application of new developed techniques for ultrasonic nondestructive testing for advanced composite materials[J]. Science & Technology Review, 2014, 32(9):15-20.

    [6]

    SOHN H, DUTTA D, YANG Y, et al. Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer[J]. Smart Materials and Structures, 2011, 20(4):045017.

    [7]

    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.

    [8]

    ESFANDABADI Y K, MARCHI L D, TESTONI N, et al. Full wavefield analysis and damage imaging through compressive sensing in lamb wave inspections[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65(2):269-280.

    [9]

    IANNI T D, DE M L, PERELLI A, et al. Compressive sensing of full wave field data for structural health monitoring applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(7):1373-1383.

    [10]

    MESNIL O, RUZZENE M. Sparse wavefield reconstruction and source detection using Compressed Sensing[J]. Ultrasonics, 2016, 67:94-104.

    [11]

    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.

    [12]

    ROSE J L, NAGY P B. Ultrasonic waves in solid media[J]. The Journal of the Acoustical Society of America, 2000, 107(4):1807-1808.

    [13]

    HENNENFENT G, HERRMANN F J. Simply denoise:Wavefield reconstruction via jittered undersampling[J]. Geophysics, 2008, 73(3):19-28.

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-10
  • 刊出日期:  2019-09-09

目录

    /

    返回文章
    返回