• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于水平剪切超声导波的高温管道壁厚在线监测

王刚, 李法新

王刚, 李法新. 基于水平剪切超声导波的高温管道壁厚在线监测[J]. 无损检测, 2019, 41(9): 1-6,15. DOI: 10.11973/wsjc201909001
引用本文: 王刚, 李法新. 基于水平剪切超声导波的高温管道壁厚在线监测[J]. 无损检测, 2019, 41(9): 1-6,15. DOI: 10.11973/wsjc201909001
WANG Gang, LI Faxin. On-line Monitoring of High Temperature Pipeline Wall Thickness Based on the Shear Horizontal Ultrasonic Guided Wave[J]. Nondestructive Testing, 2019, 41(9): 1-6,15. DOI: 10.11973/wsjc201909001
Citation: WANG Gang, LI Faxin. On-line Monitoring of High Temperature Pipeline Wall Thickness Based on the Shear Horizontal Ultrasonic Guided Wave[J]. Nondestructive Testing, 2019, 41(9): 1-6,15. DOI: 10.11973/wsjc201909001

基于水平剪切超声导波的高温管道壁厚在线监测

基金项目: 

自然科学基金面上项目(11672003)

详细信息
    作者简介:

    王刚(1992-),男,博士,主要研究方向为流体黏度在线测量和高温管道在线监测方法的研究

    通讯作者:

    李法新, E-mail:lifaxin@pku.edu.cn

  • 中图分类号: TG115.28

On-line Monitoring of High Temperature Pipeline Wall Thickness Based on the Shear Horizontal Ultrasonic Guided Wave

  • 摘要: 设计了一种基于水平剪切(SH)导波的高温管道壁厚在线监测方法,该方法通过采用波导条作为热缓冲结构,在压电换能器和高温管道之间快速隔热降温,同时传递用于测量壁厚的非频散SH导波信号。提出了一种波导条上非频散水平剪切导波激励和接收方法,设计了波导条和高温管道干耦合夹持连接装置,通过试验验证了这种SH超声导波法在高温(600℃)下在线监测管道壁厚的可行性。
    Abstract: In this paper, an on-line monitoring method of high temperature pipeline wall thickness based on the shear horizontal(SH) guided wave was developed. It uses a strip waveguide as thermal buffer structure to quickly insulate the piezoelectric transducer from high temperature pipelines, and at the same time, a non-dispersive SH guided wave is delivered through the waveguide for measuring wall thickness. A method of excitation and reception of non-dispersive shear horizontal guided wave in strip waveguides was proposed, and a dry coupling clamping device between waveguides and high temperature pipeline was designed. Finally, the feasibility of SH ultrasonic guided wave method for on-line monitoring of high temperature (600℃) pipeline wall thickness was verified by experiments.
  • [1] 刘杰, 付裕, 高海宾, 等. 一种新型管道腐蚀监测技术及应用Permasense超声波腐蚀监测系统[J]. 全面腐蚀控制, 2016, 30(8):19-22, 82.
    [2] 臧延旭. 管道壁厚测量技术研究进展[J]. 管道技术与设备, 2013(3):20-22.
    [3]

    KAZYS R,VOLEISIS A,VOLEISIENE B. High temperature ultrasonic transducers:review[J]. Ultragarsas, 2008,52:525-537.

    [4]

    ZHANG S, YU F.Piezoelectric materials for high temperature sensors[J]. Journal of the American Ceramic Society, 2011,94:3153-3170.

    [5]

    CEGLA F B, CAWLEY P, ALLIN J. High-temperature (>500℃) wall thickness monitoring using dry-coupled ultrasonic waveguide transducers[J]. IEEE Transactions on Ultrasonics, Frroelectrics and Frequency Control, 2011, 58(1):156-167.

    [6]

    BURROWS S E, FAN Y, DIXON S. High temperature thickness measurements of stainless steel and low carbon steel using electromagnetic acoustic transducers[J]. NDT & E International, 2014, 68:73-77.

    [7]

    LUNN N, POTTER M, DIXON S. Shear wave EMAT thickness measurements of low carbon steel at 450℃ without cooling[C]//Review of Progress in Quantitative Nondestructive Evaluation.[S.l.]:[s.n.],2017.

    [8]

    CEGLA F B. Energy concentration at the center of large aspect ratio rectangular waveguides at high frequencies[J]. Journal of the Acoustical Society of America, 2008, 123(6):4218.

    [9]

    ROSE L. Ultrasonic guided waves in solid media[M]. Cambridge:Cambridge University Press, 2014.

    [10] ROSE J L.固体中的超声波[M].何存富,吴斌,王秀彦,译.北京:科学出版社,2004.
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-09
  • 刊出日期:  2019-09-09

目录

    /

    返回文章
    返回