• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

小波包分解对螺栓预紧力的能量表征

李冬生, 郑绪涛

李冬生, 郑绪涛. 小波包分解对螺栓预紧力的能量表征[J]. 无损检测, 2018, 40(12): 42-46. DOI: 10.11973/wsjc201812009
引用本文: 李冬生, 郑绪涛. 小波包分解对螺栓预紧力的能量表征[J]. 无损检测, 2018, 40(12): 42-46. DOI: 10.11973/wsjc201812009
LI Dongsheng, ZHENG Xutao. Energy Characterization of Bolt Tightening Force Based on Wavelet Packet Decomposition[J]. Nondestructive Testing, 2018, 40(12): 42-46. DOI: 10.11973/wsjc201812009
Citation: LI Dongsheng, ZHENG Xutao. Energy Characterization of Bolt Tightening Force Based on Wavelet Packet Decomposition[J]. Nondestructive Testing, 2018, 40(12): 42-46. DOI: 10.11973/wsjc201812009

小波包分解对螺栓预紧力的能量表征

基金项目: 

国家自然科学基金面上项目(51478079)

详细信息
    作者简介:

    李冬生(1977-),男,教授,博导,主要从事钢筋混凝土结构基本理论及破损机理研究,土木工程结构新型无损检测技术及传感器研发等工作

    通讯作者:

    李冬生, E-mail:lidongsheng@dlut.ed.cn

  • 中图分类号: TG115.28

Energy Characterization of Bolt Tightening Force Based on Wavelet Packet Decomposition

  • 摘要: 螺栓是基础设施结构连接的重要构件,其可靠性是结构整体安全性的保证,故对结构的螺栓连接状况进行监测具有重要意义。螺栓松动和预紧力退化是螺栓常见的两种损伤类型。超声导波具有对微损伤敏感和能量衰减小等优点而被广泛应用于无损检测领域。以超声导波为检测手段,通过小波包分解提取后,各级信号的能量指标对螺栓群中的螺栓预紧力进行表征,并通过试验对该方法的可行性进行了验证。
    Abstract: Bolt as an important connection component of the infrastructure structure, its reliability influences the security of overall structure, so it is necessary to monitor the health of the bolt connection. Bolt looseness and preload degeneration are the most common types of damage to bolts. Due to the advantages of being sensitive to micro-damage and small energy attenuation with long propagation in the structure, the ultrasonic guided wave was widely used to evaluate the health state of structure. In this paper, ultrasonic guided wave was used as a damage detection method and the bolt pre-tightening force was characterized by the energy index of signals obtained from wavelet packet decomposition and the feasibility was verified by experiment.
  • [1]

    FARRAR C R, WORDEN K. An introduction to structural health monitoring[J]. Philosophical Transactions:Mathematical, Physical and Engineering Sciences, 2007, 365(1851):303-315.

    [2]

    RAGHAVAN A C, CESNIK C E S. Review of guided-wave structural health monitoring[J]. Shock & Vibration Digest, 2007, 39(2):91-114.

    [3] 刘勋丰, 李杨杨, 黄勇. 基于超声特征成像技术的铝硅热障涂层脱粘缺陷检测[J]. 无损检测, 2017, 39(10):49-53.
    [4] 胡玉平, 高鸿波, 吴伟,等. 基于希尔伯特变换的铝/铝胶接结构缺陷尺寸的超声测量[J]. 无损检测, 2017, 39(11):39-43.
    [5]

    AMERINI F, MEO M. Structural health monitoring of bolted joints using linear and nonlinear acoustic methods[J]. Structural Health Monitoring, 2011, 10(6):659-672.

    [6]

    JOHNSON G C, HOLT A C, CUNNINGHAM B. Ultrasonic method for determining axial stress in bolts[J]. Journal of Testing & Evaluation, 1986, 14(5):253-259.

    [7]

    WANG T, SONG G, WANG Z, et al. Proof-of-concept study of monitoring bolt connection status using a piezoelectric based active sensing method[J]. Smart Materials & Structures, 2013, 22(8):087001.

    [8]

    WANG R L, GU H, SONG G. Active sensing based bolted structure health monitoring using piezoceramic transducers[J]. International Journal of Distributed Sensor Networks, 2013,2:1-6.

    [9] 卢康, 贺西平, 安笑笑,等. 基于小波包变换的金属材料超声防伪识别[J].无损检测,2017,39(7):23-27.
    [10] 陈振华, 陈修忻, 王婵,等. 基于小波包分解的航空涡轮盘超声相控阵检测图像降噪技术[J]. 无损检测, 2017, 39(5):28-32.
    [11]

    BIANCHI D, MAYRHOFER E, GRÖSCHL M, et al. Wavelet packet transform for detection of single events in acoustic emission signals[J]. Mechanical Systems & Signal Processing, 2015, 64:441-451.

    [12]

    HUO L, CHEN D, KONG Q, et al. Smart washer-a piezoceramic-based transducer to monitor looseness of bolted connection[J]. Smart Material Structures, 2017, 26(2):025033.

    [13]

    YANG J, CHANG F K. Detection of bolt loosening in C-C composite thermal protection panels:I. Diagnostic principle[J]. Smart Materials & Structures, 2006, 15(2):581.

    [14] 王涛, 刘绍鹏, 李川,等. 基于压电时间反演法的螺栓松动检测研究[J]. 传感技术学报, 2015(12):1795-1799.
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-11
  • 刊出日期:  2018-12-09

目录

    /

    返回文章
    返回