• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于超声导波的管道损伤监测云系统

李绍星, 唐志峰, 吕福在, 骆苏军, 陈会明, 伍建军

李绍星, 唐志峰, 吕福在, 骆苏军, 陈会明, 伍建军. 基于超声导波的管道损伤监测云系统[J]. 无损检测, 2018, 40(12): 37-41,46. DOI: 10.11973/wsjc201812008
引用本文: 李绍星, 唐志峰, 吕福在, 骆苏军, 陈会明, 伍建军. 基于超声导波的管道损伤监测云系统[J]. 无损检测, 2018, 40(12): 37-41,46. DOI: 10.11973/wsjc201812008
LI Shaoxing, TANG Zhifeng, LÜ Fuzai, LUO Sujun, CHEN Huiming, WU Jianjun. Pipeline Damage Monitoring Cloud System Based on Ultrasonic Guided Waves[J]. Nondestructive Testing, 2018, 40(12): 37-41,46. DOI: 10.11973/wsjc201812008
Citation: LI Shaoxing, TANG Zhifeng, LÜ Fuzai, LUO Sujun, CHEN Huiming, WU Jianjun. Pipeline Damage Monitoring Cloud System Based on Ultrasonic Guided Waves[J]. Nondestructive Testing, 2018, 40(12): 37-41,46. DOI: 10.11973/wsjc201812008

基于超声导波的管道损伤监测云系统

基金项目: 

国家自然科学基金项目(61271084,51275454);浙江省重大科技专项项目(2017C01042);国家重点研发计划(2018YFC0809000)

详细信息
    作者简介:

    李绍星(1994-),男,硕士研究生,主要从事导波监测算法研究

    通讯作者:

    唐志峰, E-mail:tangzhifeng@zju.edu.cn

  • 中图分类号: TG115.28

Pipeline Damage Monitoring Cloud System Based on Ultrasonic Guided Waves

  • 摘要: 为解决实际管道在导波检测中,微小缺陷信号会被复杂结构的特征回波淹没而造成漏检的问题,针对影响监测信号的外界因素,提出了有效的预处理方法,并开展了对时域差值分析监测算法的理论研究,指出运用该算法提取微小缺陷特征的可行性。通过搭建磁致伸缩超声导波的管道损伤远程监测云平台,实现了自动化、数字化、智能化的管线在线监测,并通过试验得到管道腐蚀速率、健康状况等信息,验证了监测算法和监测平台的可行性和有效性。
    Abstract: In order to solve the problem that the small defect signal in the guided wave detection of the actual pipeline is inundated by the characteristic echo of the complex structure, an effective pre-processing method for the signal is proposed for suppressing the effect of those possible external factors. Theoretical study on the algorithm for residual signal analysis in the time domain is carried out, and the feasibility of extracting the characteristics of tiny defects is pointed out. A remote monitoring cloud platform for pipeline damage with magnetostrictive ultrasonic guided waves is built to realize automated, digital and intelligent pipeline online monitoring. The corrosion rate and health status of the pipeline are obtained and the feasibility and effectiveness of the monitoring algorithm and platform are verified by laboratorial experiments.
  • [1] 罗斯. 固体中的超声波[M]. 北京:科学出版社, 2004.
    [2] 刘洋. 磁致伸缩导波锚杆无损检测实验研究[D]. 杭州:浙江大学, 2010.
    [3]

    HE J, LESER P E, LESER W P. Baseline-subtraction-free (BSF) damage-scattered wave extraction for stiffened isotropic plates[C]//International Workshop on Structural Health Monitoring. Stanford:[s.n.], 2017.

    [4]

    MICHAELS J E, MICHAELS T E. Detection of structural damage from the local temporal coherence of diffuse ultrasonic signals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(10):1769-1782.

    [5] 顾钧元, 徐廷学, 余仁波, 等. 结构健康监测及其关键技术研究[J]. 兵工自动化, 2011, 30(8):61-64.
    [6] 何浩祥, 闫维明, 马华, 等. 结构健康监测系统设计标准化评述与展望[J]. 地震工程与工程振动, 2008, 28(8):154-160.
    [7]

    JOSEPH L R. A baseline and vision of ultrasonic guided wave insection potential[J]. Journal of Pressure Vessel Technology. 2002, 124(3):273-282.

    [8]

    CROXFORD A J, WILCOX P D. Quantification of environmental compensation strategies for guided wave structural health monitoring[J]. Proc Spie, 2008, 463(2087):2961-2981.

    [9] 刘凯, 马丽敏, 陈志东, 等. 埋地管道的腐蚀与防护综述[J]. 管道技术与设备, 2007(4):36-42.
    [10] 陈清平, 周新华, 马睿松, 等. 降低因信号幅值变化对高精度相位测量影响的方法:中国, CN 103499742 A[P]. 2014-01-08.
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-26
  • 刊出日期:  2018-12-09

目录

    /

    返回文章
    返回