• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

工件表面缺陷尺寸的激光测量系统

郭瑞鹏, 边栋梁, 王海涛

郭瑞鹏, 边栋梁, 王海涛. 工件表面缺陷尺寸的激光测量系统[J]. 无损检测, 2018, 40(11): 5-9. DOI: 10.11973/wsjc201811002
引用本文: 郭瑞鹏, 边栋梁, 王海涛. 工件表面缺陷尺寸的激光测量系统[J]. 无损检测, 2018, 40(11): 5-9. DOI: 10.11973/wsjc201811002
GUO Ruipeng, BIAN Dongliang, WANG Haitao. Laser Measuring System of Workpiece Surface Defect Size[J]. Nondestructive Testing, 2018, 40(11): 5-9. DOI: 10.11973/wsjc201811002
Citation: GUO Ruipeng, BIAN Dongliang, WANG Haitao. Laser Measuring System of Workpiece Surface Defect Size[J]. Nondestructive Testing, 2018, 40(11): 5-9. DOI: 10.11973/wsjc201811002

工件表面缺陷尺寸的激光测量系统

基金项目: 

国家自然科学基金资助项目(51505220)

详细信息
    作者简介:

    郭瑞鹏(1981-),女,博士,主要从事光学检测、无损检测方面的研究

    通讯作者:

    郭瑞鹏, E-mail:rpguo@nuaa.edu.cn

  • 中图分类号: TG115.28

Laser Measuring System of Workpiece Surface Defect Size

  • 摘要: 针对目前工件表面缺陷尺寸的定量检测相对较少的问题,建立了一个由准直激光器、相机、显微镜和平移台等组成的检测系统,以实现金属表面凹痕尺寸的检测。采用激光作为光源,配备显微镜的相机采集图像,使用基于重心的方法对采集的图像进行处理,通过分析凹痕像素的分布情况来获得凹痕宽度。试验结果表明,该检测系统能够检测出工件表面凹痕的位置,并计算出缺陷的详细尺寸。
    Abstract: The quantitative detection of the workpiece surface defect has been mentioned rarely. In order to solve this problem, a measuring system which consists of a collimated laser diode, a camera, a microscope and a translation stage is built. The laser is chosen as the light source, and the light pattern on the surface is picked up by the camera with a microscope. The images of light pattern are processed by using centre of gravity method, and the width of the surface defect can be obtained by analyzing the pixels distribution corresponding to the defect. Some experiments have been done, and the results show that this system can detect the defect position and calculate the size.
  • [1] 王晶. 金属表面缺陷和钢轨踏面残余应力的激光超声无损检测研究[D]. 北京:北京交通大学, 2016.
    [2]

    BRA AČG UN D, GRUDEN V, MOŽINA J. A method for surface quality assessment of die-castings based on laser triangulation[J]. Measurement Science & Technology, 2008, 19(19):045707.

    [3]

    LIU D, YANG Y, WANG L, et al. Microscopic scattering imaging measurement and digital evaluation system of defects for fine optical surface[J]. Optics Communications, 2007, 278(2):240-246.

    [4]

    FORTE P M F, FELGUEIRAS P E R, FERREIRA F P, et al. Exploring combined dark and bright field illumination to improve the detection of defects on specular surfaces[J]. Optics & Lasers in Engineering, 2017, 88(1):120-128.

    [5]

    TAO X, XU D, ZHANG Z T, et al. Weak scratch detection and defect classification methods for a large-aperture optical element[J]. Optics Communications, 2016, 387(5):390-400.

    [6]

    RAVIKUMAR S, RAMACHANDRAN K I, SUGUMARAN V. Machine learning approach for automated visual inspection of machine components[J]. Expert Systems with Applications, 2011, 38(4):3260-3266.

    [7]

    SIDOROV I S, NIPPOLAINEN E, KAMSHILIN A A. Detection of small surface defects of nontransparent scattering materials by using dynamic speckles[J]. Applied Optics, 2012, 51(11):1781-1787.

    [8]

    YOUNES M A. Measurement and inspection of micro-features and micro-surface scratches[J]. Alexandria Engineering Journal, 2004, 43(5):545-552.

    [9]

    HA T, MIYOSHI T, TAKAYA Y, et al. Size determination of microscratches on silicon oxide wafer surface using scattered light[J]. Precision Engineering, 2003, 27(3):265-272.

    [10]

    CHOI S, YOON S H, JHANG K Y, et al. Real-time detection of surface cracks on silicon wafers during laser beam irradiation[J]. Journal of Mechanical Science & Technology,2015,29(1):39-43.

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-04
  • 刊出日期:  2018-11-09

目录

    /

    返回文章
    返回