Progress of Magnetic Barkhausen Noise Technique in Stress Evaluation
-
摘要: 磁巴克豪森噪声(MBN)技术可以探测铁磁性材料由于应力作用而发生的微观结构变化,进而评估材料受力和失效情况。基于金属磁畴理论和磁化理论,从微观上对MBN现象进行解释,并结合Jiles-Atherton磁化模型定量分析应力对MBN信号的影响,介绍应力作用下金属材料在弹性变形阶段和塑性变形阶段的MBN信号变化特点,分析材料所受载荷压力和残余应力在本质上对材料磁畴结构、晶粒易磁化轴、晶粒各向异性等微观结构的影响,指出应力既会促使材料内部产生缺陷从而阻碍巴克豪森跳跃,也会促进相邻磁畴壁的融合,进而增加巴克豪森跳跃,最终的MBN信号是应力对巴克豪森跳跃阻碍作用和促进作用相互博弈的结果。最后,还总结了MBN技术在应力评估方面的优势、不足及未来可开展的研究方向。Abstract: Microstructure transformation of ferromagnetic material caused by stress can be detected by magnetic Barkhausen noise (MBN) technique,which was a reliable method to estimate the stress condition and failure condition of magnetic material. This paper illustrated the MBN phenomenon based on magnetic domain theory and magnetization theory, and also evaluated the influence of MBN signal caused by stress using the Jiles-Atherton magnetization model. The change characteristic of MBN signal was illustrated when the magnetic material was under the situation of elastic deformation stage and plastic deformation respectively. Moreover, the influence of loading stress and residual stress to microstructure, such as domain structure, easy magnetization axis and anisotropy, was discussed essentially. It was pointed out that the stress would not only cause defects in the magnetic material to decrease Barkhausen jump, but also cause the domain wall merger to increase the Barkhausen jump. Eventually, the final Barkhausen signal was the interaction of the decreased and increased jumps. Furthermore, the superiorities, deficiencies and new research area of MBN stress evaluation technique were summarized.
-
Keywords:
- MBN /
- stress evaluation /
- residual stress /
- domain wall structure
-
-
[1] 沈功田,郑阳,蒋政培,等. 磁巴克豪森噪声技术的发展现状[J].无损检测, 2016, 38(7):66-74. [2] HUEBSCHEN G, ALTPETER I, TSCHUNCKY R, et al. Materials characterization using non-destructive evaluation (NDE) methods[M]. London:Woodhead Publishing, 2016:226-241.
[3] LORD A E. Elastic wave radiation from simply-vibrating 180° magnetic domain walls[J]. Acta Acustica United with Acustica, 1967, 18(4):187-192.
[4] SHIBATA M, ONO K. Magneto mechanical acoustic emission-A new method for non-destructive stress measurement[J]. NDT International, 1981, 14(5):227-234.
[5] 沈永娜,沈功田,柯卫杰,等.磁声发射检测技术研究进展[J].无损检测,2017,39(5):87-98. [6] ALESSANDRO B, BEATRICE C, BERTOTTI G, et al. Domain wall dynamics and Barkhausen effect in metallic ferromagnetic materials. chapter I. theory[J]. Journal of Applied Physics, 1990, 68(6):2901-2907.
[7] JILES D C. Dynamics of domain magnetization and the Barkhausen effect[J]. Czechoslovak Journal of Physics, 2000, 50(8):890-988.
[8] KYPRIS O, NLEBEDIM I C, JILES D C. A new method for obtaining stress-depth calibration profiles for non-destructive evaluation using a frequency-dependent model of Barkhausen emissions[J]. IEEE Transactions on Magnetics, 2013, 49(7):3893-3897.
[9] THOMAS W A. 180 degree domain walls as a source of magneto acoustic emission[D].Boston:Massachusetts Institute of Technology,1993.
[10] 刘清友,罗旭, 朱海燕,等.基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正[J]. 物理学报,2017,66(10):297-306. [11] MANH T L, CALEYO F, HALLEN J M, et al. Model for the correlation between magneto crystalline energy and Barkhausen noise in ferromagnetic materials[J]. Journal of Magnetism and Magnetic Materials,2018,454:155-164.
[12] KYPRIS O. Detection of sub-surface stresses in ferromagnetic materials using a new Barkhausen noise method[D]. Ames:Iowa State University, 2015.
[13] MIERCZAK L, JILES D C, FANTONI G. A new method for evaluation of mechanical stress using the reciprocal amplitude of magnetic Barkhausen noise[J]. IEEE Transactions on Magnetics, 2011, 47(2):459-465.
[14] JILES D C, ATHERTON D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986,61(1):48-60.
[15] 郭贻诚. 铁磁学[M]. 北京:北京大学出版社, 2014:350-353. [16] WANG Ping, ZHU Lei, ZHU Qiujun, et al. An application of back propagation neural network for the steel stress detection based on Barkhausen noise theory[J]. NDT&E International,2013,55(3):9-14.
[17] KYPRIS O, NLEBEDIM I C, JILES D C. Barkhausen spectroscopy:non-destructive characterization of magnetic materials as a function of depth[J]. Journal of Applied Physics,2014,115:17E305.
[18] DHAR A, CLAPHAM L, ATHERTON D L. Influence of uniaxial plastic deformation on magnetic barkhausen noise in steel[J]. NDT & E International,2001,34(8):507-514.
[19] KYPRISA O, NLEBEDIMB I C, JILES D C. Measuring stress variation with depth using Barkhausen signals[J]. Journal of Magnetism and Magnetic Materials,2016,407:377-395.
[20] SULLIVAN D O, COTTERELL M, MESZAROS I. The characterisation of work-hardened austenitic stainless steel by NDT micro-magnetic techniques[J]. NDT & E International, 2004,37(4):265-269.
[21] FREDDY A. FRANCO G, PADOVESE L R. Non-destructive scanning for applied stress by the continuous magnetic Barkhausen noise method[J]. Journal of Magnetism and Magnetic Materials,2018, 446:231-238.
[22] KYPRIS O, NLEBEDIM I C, JILES D C. A new method for obtaining stress-depth calibration profiles for non-destructive evaluation using a frequency-dependent model of Barkhausen emissions[J]. IEEE Transactions on Magnetics,2013, 49(7):3893-3897.
[23] AMIRIA M S, THIELENB M, RABUNG M, et al. On the role of crystal and stress anisotropy in magnetic Barkhausen noise[J]. Journal of Magnetism and Magnetic Materials, 2014,372:16-22.
[24] MOORTHY V, SHAW B A, DAY S. Evaluation of appliedand residual stresses in case-carburised En36 steel subjected to bending using the magnetic Barkhausen emission technique[J]. Acta Materialia, 2014,52(12):3747-3751.
[25] BALDEV R, JAYAKUMAR T, MOORTHY V, et al. Characterisation of microstructures, deformation, and fatigue damage in different steels using magnetic Barkhausen emission technique[J]. Russian Journal of Nondestructive Testing, 2001,37(11):789-798.
[26] 祁欣,陈娟,刘殿魁. 利用近饱和磁化产生的巴克豪森效应测量铁磁件二轴应力[J]. 计量学报. 1999,20(1),11-16. [27] DING S, TIAN G Y, MOORTHY V, et al. New feature extraction for applied stress detection on ferromagnetic material using magnetic Barkhausen noise[J]. Measurement, 2015, 73:515-519.
[28] DHAR A, CLAPHAM L, ATHERTON D L. Influence of uniaxial plastic deformation on magnetic Barkhausen noise in steel[J]. NDT & E International, 2001,34(8):507-514.
[29] KLEBER X, VINCENT A. On the role of residual internal stresses and dislocations on Barkhausen noise in plastically deformed steel[J]. NDT&E International, 2003, 36(6):439-445.
[30] VASHISTA M,PAUL S. Novel processing of Barkhausen noise signal for assessment of residual stress in surface ground components exhibiting poor magnetic response[J]. Journal of Magnetism and Magnetic Materials, 2011,323(21):2579-2584.
计量
- 文章访问数: 17
- HTML全文浏览量: 0
- PDF下载量: 0