• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于EEMD_SVM的波纹管压浆超声检测

郑豪, 韩庆邦, 王鹏

郑豪, 韩庆邦, 王鹏. 基于EEMD_SVM的波纹管压浆超声检测[J]. 无损检测, 2018, 40(6): 38-42. DOI: 10.11973/wsjc201806010
引用本文: 郑豪, 韩庆邦, 王鹏. 基于EEMD_SVM的波纹管压浆超声检测[J]. 无损检测, 2018, 40(6): 38-42. DOI: 10.11973/wsjc201806010
ZHENG Hao, HAN Qingbang, WANG Peng. Ultrasonic Testing of Corrugated Pipe Based on the Ensemble Empirical Mode Decomposition and Support Vector Machine[J]. Nondestructive Testing, 2018, 40(6): 38-42. DOI: 10.11973/wsjc201806010
Citation: ZHENG Hao, HAN Qingbang, WANG Peng. Ultrasonic Testing of Corrugated Pipe Based on the Ensemble Empirical Mode Decomposition and Support Vector Machine[J]. Nondestructive Testing, 2018, 40(6): 38-42. DOI: 10.11973/wsjc201806010

基于EEMD_SVM的波纹管压浆超声检测

基金项目: 

国家自然科学基金(11574072);江苏省重点研发计划(BE2016056)

详细信息
    作者简介:

    郑豪(1994-),男,硕士研究生,研究方向为声通信与信号处理

    通讯作者:

    韩庆邦, E-mail:hqb0092@163.com

  • 中图分类号: TG115.28

Ultrasonic Testing of Corrugated Pipe Based on the Ensemble Empirical Mode Decomposition and Support Vector Machine

  • 摘要: 采用超声方法检测接收波纹管模型的回波信号,利用总体平均经验模态分解(EEMD)方法将信号分解成多个频带的本征模态分量(IMF); 当波纹管内部出现脱浆缺陷时,回波信号在不同IMF内的能量分布会发生变化,将主要IMF分量的能量熵特征作为支持向量机(SVM)的输入向量,建立分类机制来区分波纹管结构。试验结果表明,文中提出的方法能有效地判断波纹管是否出现严重脱浆。
    Abstract: Ultrasonic detection was utilized to receive signal from corrugated pipe model and the EEMD method (ensemble empirical mode decomposition) was used to decompose signal into intrinsic mode function of multiple frequency spectrums (the IMF). When there is a defect in corrugated pipe, the echo signal's energy distribution in different frequency spectrums will be different. The main IMF component's energy entropy was taken as the input vector of SVM (support vector machine), then the mechanism of classification was set up to justify corrugated pipe's structure. The experimental results show that the proposed method can effectively judge the corrugated pipe's quality.
  • [1] 成锦, 韩庆邦, 范洪辉,等. 基于小波熵技术的波纹管压浆质量无损检测[J]. 压电与声光, 2014, 36(6):1025-1029.
    [2] 高小妮, 谢峻, 安宁,等.基于不同雷达天线的桥梁深层钢筋识别精度试验[J]. 无损检测, 2017, 39(11):44-47.
    [3]

    JONG-HYO A, DAE-HO K, BONG-HWAN K. Fault detection of a roller-bearing system through the EMD of a wavelet denoised signal[J]. Sensors, 2014, 14(8):15022-15038.

    [4]

    WANG T, ZHANG M, YU Q, et al. Comparing the application of EMD and EEMD on time-frequency analysis of seimic signal[J]. Journal of Applied Geophysics, 2012, 83(6):29-34.

    [5]

    LIU Z, CUI Y, LI W. A classification method for complex power quality disturbances using EEMD and rank wavelet SVM[J]. IEEE Transactions on Smart Grid, 2015, 6(4):1678-1685.

    [6] 吴庆伟, 王金龙, 张平. 基于FOA-SVM模型的输油管道内腐蚀速率预测[J]. 腐蚀与防护, 2017, 38(9):732-736.
    [7]

    LIAN Y, LI Y W, QUAN Z, et al. SVM strategies for common-mode current reduction in transformerless current-source drives at low modulation index[J]. IEEE Transactions on Power Electronics,2016,32(2):1312-1323.

    [8]

    HAN Q, CHENG J, FAN H, et al. Ultrasonic nondestructive testing of cement grouting quality in corrugated pipes based on impact-echo[J]. Journal of Advanced Concrete Technology,2014,12(11):503-509.

计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-30
  • 刊出日期:  2018-06-09

目录

    /

    返回文章
    返回