• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

DR图像中气孔缺陷的自动检测与识别

周鹏飞, 王飞, 肖辉, 敖波

周鹏飞, 王飞, 肖辉, 敖波. DR图像中气孔缺陷的自动检测与识别[J]. 无损检测, 2017, 39(10): 37-41. DOI: 10.11973/wsjc201710009
引用本文: 周鹏飞, 王飞, 肖辉, 敖波. DR图像中气孔缺陷的自动检测与识别[J]. 无损检测, 2017, 39(10): 37-41. DOI: 10.11973/wsjc201710009
ZHOU Pengfei, WANG Fei, XIAO Hui, AO Bo. Automatic Detection and Recognition of Gas Pores in DR Images[J]. Nondestructive Testing, 2017, 39(10): 37-41. DOI: 10.11973/wsjc201710009
Citation: ZHOU Pengfei, WANG Fei, XIAO Hui, AO Bo. Automatic Detection and Recognition of Gas Pores in DR Images[J]. Nondestructive Testing, 2017, 39(10): 37-41. DOI: 10.11973/wsjc201710009

DR图像中气孔缺陷的自动检测与识别

详细信息
    作者简介:

    周鹏飞(1985-),男,学士,工程师,主要从事射线检测工作

    通讯作者:

    敖波, E-mail:aobo0328@163.com

  • 中图分类号: TG115.28

Automatic Detection and Recognition of Gas Pores in DR Images

  • 摘要: 焊接缺陷的自动检测与识别是无损检测领域的研究热点之一。首先构造了一个平滑模板,对原始图像进行中值滤波,得到理想焊缝图像。其次进行图像减影操作,当灰度连通性超过给定的阈值T时,当前位置被标志为可疑缺陷,从而实现焊缝图像中可疑缺陷的自动检测;自动检测后得到4个可疑缺陷,计算所有可疑缺陷的特征参数,定性分析后均判定为气孔;最后得到了缺陷列表,缺陷列表与气孔缺陷二值图像之间建立了一一对应关系。
    Abstract: Automatic detection and recognition of weld defects is one of the hot spots in nondestructive testing. In this paper, firstly, a smooth template was constructed, the original image was filtered by median filter, and then the ideal weld image was constructed. Secondly, the image subtraction operation was performed, and the current position was marked as a suspicious defect when the gray connectivity exceeded a given threshold value of T, then automatic detection of weld defects was realized. Four suspicious defects were obtained after automatic detection, the characteristic parameters of all suspicious defects were calculated, and all suspicious defects were determined as gas pores after qualitative analysis. Finally, the defect list was obtained, and the correspondence between the defect list and the two value image of gas pores was established.
  • [1] 李亚江,王娟. 焊接缺陷分析与对策[M]. 北京:化学工业出版社, 2014.
    [2]

    VAITHIYANATHAN V, ANISHIN RAJ M M. Survey on various segmentation techniques used for weld defect detection in radiography[J].European Journal of Scientific Research,2011,66(3):449-455.

    [3] 杨静. 基于X射线图像的焊缝缺陷检测与识别技术[D]. 太原:中北大学, 2008.
    [4] 张晓光,高顶. 射线检测焊接缺陷的提取和自动识别[M]. 北京:国防工业出版社, 2004.
    [5] 梁硼. X射线焊缝图像缺陷自动提取与识别技术研究[D]. 南京:南京航空航天大学,2012.
    [6]

    ZAHRAN O, KASBAN H, KORDY M E. Automatic weld defect identification from radiographic images[J].NDT&E International,2013, 57:26-35.

    [7]

    BANIUKIEWICZ P. Automated defect recognition and identification in digital radiography[J]. Journal of Nondestructive Evaluation, 2014,33: 327-334.

    [8]

    BOARETTO N,CENTENO T M.Automated detection of welding defects in pipelines from radiographic images DWDI[J]. NDT&E International, 2017, 86:7-13.

    [9]

    SHAO J X, DU D, CHANG B H, et al. Automatic weld defect detection based on potential defect tracking in real-time radiographic image sequence[J]. NDT&E International, 2012, 46:14-21.

    [10] 田原,都东, 侯润石,等. 基于X射线图像序列的焊缝缺陷自动检测方法[J]. 清华大学学报(自然科学版), 2007,47(8):1278-1281, 1286.
    [11]

    XIAO X H. Automated defect recognition in digital radiography[D].Dalian:Dalian University of Technology, 2009.

计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-13
  • 刊出日期:  2017-10-09

目录

    /

    返回文章
    返回