• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于热图重构区域生长算法的碳纤维增强复合材料脱粘缺陷检测

冯琪智, 高斌, 杨扬, 田贵云

冯琪智, 高斌, 杨扬, 田贵云. 基于热图重构区域生长算法的碳纤维增强复合材料脱粘缺陷检测[J]. 无损检测, 2017, 39(9): 29-34. DOI: 10.11973/wsjc201709007
引用本文: 冯琪智, 高斌, 杨扬, 田贵云. 基于热图重构区域生长算法的碳纤维增强复合材料脱粘缺陷检测[J]. 无损检测, 2017, 39(9): 29-34. DOI: 10.11973/wsjc201709007
FENG Qizhi, GAO Bin, YANG Yang, TIAN Guiyun. Debonding Defect Detection of CFRP Based on Thermal Signal Reconstructed Region Growing Algorithm[J]. Nondestructive Testing, 2017, 39(9): 29-34. DOI: 10.11973/wsjc201709007
Citation: FENG Qizhi, GAO Bin, YANG Yang, TIAN Guiyun. Debonding Defect Detection of CFRP Based on Thermal Signal Reconstructed Region Growing Algorithm[J]. Nondestructive Testing, 2017, 39(9): 29-34. DOI: 10.11973/wsjc201709007

基于热图重构区域生长算法的碳纤维增强复合材料脱粘缺陷检测

基金项目: 

四川省科技支撑计划资助项目(2016GZ0185);国家自然科学基金资助项目(51377015,61401071,61527803);NSAF联合基金资助项目(U1430115);中央高校基本业务费资助项目(ZYGX2014J068);中国博士后科学基金资助项目(136413)。

详细信息
    作者简介:

    冯琪智(1993-),女,硕士研究生,主要研究方向为复合材料无损检测

    通讯作者:

    高斌, E-mail:bin_gao@uestc.edu.cn

  • 中图分类号: TG115.28

Debonding Defect Detection of CFRP Based on Thermal Signal Reconstructed Region Growing Algorithm

  • 摘要: 提出了基于区域生长和热成像信息重构的融合算法,该算法能较好地解决OPT(光激励红外热成像)方法缺陷检测中分辨率低的难题,显著提高缺陷和非缺陷区域的对比度,实现缺陷的精确检出。为了评价不同算法的检测性能,采用了基于事件的F-score评价方法来衡量检测结果,该方法能定量比较不同特征提取算法。
    Abstract: In this paper, the fusion of seeded region growing and thermal signal reconstruction algorithm has been proposed to solve the problem of low resolution of defect detection. The algorithm can significantly enhance the contrast ration between defects and sound areas, and realize the accurate positioning of defects. In order to objectively and quantitatively evaluate the detection performance of different algorithms, the event based F-score is computed to measure the detection results.
  • [1] 周正干,孙广开,李洋. 先进无损检测技术在复合材料缺陷检测中的应用[J]. 航空制造技术,2016(4):30-35.
    [2] 危荃, 金翠娥, 周建平, 等.空气耦合超声技术在航空航天复合材料无损检测中的应用[J]. 无损检测, 2016, 38(8): 6-11.
    [3] 汪星明, 郭耀红, 朱庆友, 等. 复合材料无损检测研究进展[J]. 玻璃钢/复合材料, 2012(S1): 261-265.
    [4] 黄松岭, 李路明. 复合材料胶接缺陷的红外热像检测[J]. 宇航材料工艺, 2002, 32(6): 43-46.
    [5] 郭伟,董丽虹,徐滨士,等.主动红外热像无损检测技术的研究现状与进展[J]. 无损检测, 2016,38(4):58-66.
    [6] 林鑫,刘哲军,葛丽,等.复合材料粘接结构红外锁相热像法检测[J].无损检测, 2017, 39(1): 49-51.
    [7]

    FERNANDES, HENRIQUE. Carbon fiber composites inspection and defect characterization using active infrared thermography: numerical simulations and experimental results[J].Applied Optics,2016,34: 46-53.

    [8]

    POUDEL, ANISH. Non-destructive evaluation of composite repairs by using infrared thermography[J]. Journal of Composite Materials,2016,50: 351-363.

    [9] 郭兴旺, 董淑琴. 基于小波变换的红外热波无损检测融合算法[J].光学技术,2008,34(5):659-663.
    [10] 何炜,张存林. 红外热成像和光锁相热成像用于无损检测中的实验研究[D]. 北京:首都师范大学, 2009.
    [11] 刘涛, 李永峰,黄威.BP神经网络在红外热波无损检测定量识别中的应用[J]. 红外与激光工程, 2012(9): 2304-2310.
    [12]

    RAJIC, NIKOLAS. Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures[J].Composite Structures, 2002,58: 521-528.

    [13]

    LIANG T,Ren W,TIAN G Y,et al. Low energy impact damage detection in CFRP using eddy current pulsed thermography[J]. Composite Structures,2016,143: 352-361.

    [14]

    SRIPRAGASH, LETCHUMAN, MANNUR J.A normalization procedure for pulse thermographic nondestructive evaluation[J]. NDT & E International, 2016,83: 14-23.

    [15]

    HYVARINEN, AAPO, ERKKI O. Independent component analysis: algorithms and applications[J]. Neural Networks,2000,13: 411-430.

    [16]

    SWITA R. Cluster segmentation of thermal image sequences using kd-tree structure[J]. International Journal of Thermophysics, 2014, 35(12):2374-2387.

    [17]

    MALDAGUE, XAVIER, SERGIO M.Pulse phase infrared thermography[J]. Journal of Applied Physics, 1996,79: 2694-2698.

    [18]

    BENMOUSSAT. Automatic metal parts inspection: use of thermographic images and anomaly detection algorithms[J]. Infrared Physics and Technology, 2013,61: 68-80.

计量
  • 文章访问数:  3
  • HTML全文浏览量:  1
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-06
  • 刊出日期:  2017-09-09

目录

    /

    返回文章
    返回