Characteristic Analysis of AE Signal in Welding Process Based on Harmonic Extraction
-
摘要: 通过试验掌握焊接过程中声发射信号特性是实现焊接裂纹声发射在线检测的前提。提出了一种基于谐波提取的声发射信号特性分析方法,结合焊接过程中声发射信号测试试验,对焊接过程中的声发射信号进行有效提取与频谱分析,获取了焊接过程中摩擦激励源、焊接电弧冲击激励源和焊接结构裂纹激励源声发射信号的频域特性。为实现焊接过程中的结构裂纹声发射在线检测提供了基础数据及参考依据。Abstract: Characteristic analysis of the acoustic emission (AE) signal accompanying welding process by way of experiment is a prerequisite for realizing online detection of the welding crack. An AE signal characteristic analysis method based on harmonic extraction is proposed. Combining with an experiment on AE signals during the welding process, the valid extraction and frequency spectrum analysis are performed for AE signals collected in welding process. The AE signals frequency domain characteristics of the corresponding excitation source of friction, the welding arc shock and the welding structure crack are obtained respectively, which provide basic data and reference for realizing AE online detection of the welding crack.
-
Keywords:
- welding process /
- AE signal /
- harmonic extraction /
- frequency spectrum analysis
-
-
[1] 许中林,李国禄, 董天顺. 声发射信号分析与处理方法研究进展[J].材料导报,2014,28(5):56-60. [2] 耿荣升,沈功田,刘时风. 声发射信号处理和分析技术[J].无损检测,2002,24(1):23-28. [3] YANG Z, YU Z, WU H, et al. Laser-induced thermal damage detection in metallic materials via acoustic emission and ensemble empirical mode decomposition[J]. Journal of Materials Processing Technology, 2014, 214(8):1617-1626.
[4] HAN L, LI C W, GUO S L, et al. Feature extraction method of bearing AE signal based on improved FAST-ICA and wavelet packet energy[J]. Mechanical Systems & Signal Processing, 2015, 62/63:91-99.
[5] YANG Z, YU Z. Grinding wheel wear monitoring based on wavelet analysis and support vector machine[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(1):107-121.
[6] 刘贵杰, 徐萌, 李思乐,等. 基于小波能量系数的海洋平台管节点疲劳裂纹扩展AE信号识别[J]. 无损检测, 2013, 35(2):1-7. [7] 吴旭景, 杜斌, 叶陈. 基于EMD和小波分解的管道泄漏声发射源定位[J]. 无损检测, 2015, 37(10):60-63. [8] 徐嗣嘉, 林丽, 周勇. 基于共振解调和小波包能量谱的声发射信号特征提取[J]. 无损检测, 2016, 38(1):1-5. [9] 蒋鹏, 张璐莹, 李伟. 基于小波神经网络的储罐声发射检测信号分析方法[J]. 无损检测, 2014, 36(9):1-4. [10] SUN J, XIAO Q, WEN J. Natural gas pipeline small leakage feature extraction and recognition based on LMD envelope spectrum entropy and SVM[J]. Measurement, 2014, 55(9):434-443.
[11] 徐彦凯,双凯. 自适应奇异值分解瞬变信号检测研究[J].电子与信息学报,2014,36(3):583-588. [12] 余晓芬,俞建卫,费业泰. 混合谱动态测试信号综合分析法[J].中国科学技术大学学报,2002,32(1):112-116.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 2