• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

铁路车轮超声波B型检测的图像分割算法

任明照, 高东海, 郑韵娴

任明照, 高东海, 郑韵娴. 铁路车轮超声波B型检测的图像分割算法[J]. 无损检测, 2017, 39(7): 8-11. DOI: 10.11973/wsjc201707002
引用本文: 任明照, 高东海, 郑韵娴. 铁路车轮超声波B型检测的图像分割算法[J]. 无损检测, 2017, 39(7): 8-11. DOI: 10.11973/wsjc201707002
REN Mingzhao, GAO Donghai, ZHENG Yunxian. Image Segmentation Method in Ultrasonic B-scan for Railway Wheels[J]. Nondestructive Testing, 2017, 39(7): 8-11. DOI: 10.11973/wsjc201707002
Citation: REN Mingzhao, GAO Donghai, ZHENG Yunxian. Image Segmentation Method in Ultrasonic B-scan for Railway Wheels[J]. Nondestructive Testing, 2017, 39(7): 8-11. DOI: 10.11973/wsjc201707002

铁路车轮超声波B型检测的图像分割算法

基金项目: 

中国铁道科学研究院院基金资助项目“机车小修时车轮顶轮探伤系统的研制”(2014YJ061)

详细信息
    作者简介:

    任明照(1979-),男,副研究员,硕士,主要从事铁路无损检测信号处理技术和软件研发工作

    通讯作者:

    任明照, E-mail:arrenah@gmail.com

  • 中图分类号: TG115.28

Image Segmentation Method in Ultrasonic B-scan for Railway Wheels

  • 摘要: 基于图像分割原理,对检测图像中的缺陷区域进行分割和提取,根据超声波B型图像在纵向和横向的不同特点,改进了传统区域生长的图像分割方法;以超声波B型图像中的颜色极值点为种子像素,在图像的纵向和横向采用不同的生长准则,提出了在纵向上采用波谷阈值的生长准则,在横向上采用相关系数阈值的生长准则,并通过实际的铁路车轮超声波B型检测试验验证,取得了良好的缺陷信号区域分割效果。
    Abstract: In the ultrasonic B-scan inspection for railway wheels, defection region is to be isolated from the B-scan image on the basis of image segmentation. According to the deferent features of B-scan image at vertical and horizontal directions, a new method is introduced in this paper to solve the B-scan image segmentation as a result of improving the traditional region growing method. In the new method, the pixels with maximal color value are picked out as the seed pixels, and then different growing principles are used in the region growing method at vertical and horizontal directions, in which the principle of wave valley threshold is used at the vertical direction, and the principle of correlation coefficient threshold is used at the horizontal direction. By the experiments of ultrasonic B-san for railway wheels, it shows that the new region growing method behaves well and acquires a satisfied result of defection region segmentation.
  • [1] 刘宪,范军.机车轮箍和整体轮的超声波探伤[J].无损检测,2006,28(9):498-501.
    [2] 吴迪,刘逸军.前列腺肿瘤超声图像清晰化处理研究[J].中国卫生标准管理, 2015(26):141-142.
    [3] 李金冬,郑政.浅表组织超声图像的均衡化处理[J].中国生物医学工程学报,2013, 32(2):191-196.
    [4] 中国机械工程学会无损检测分会.超声波检测[M].北京:机械工业出版社,2000.
    [5] RAFAEL C G, RICHARD E W.数字图像处理[M].北京:电子工业出版社,2011.
    [6]

    SUJATHA G S, KUMARI V. An innovative moving object detection and tracking system by using modified region growing algorithm[J]. Signal & Image Processing: An International Journal(SIPIJ), 2016, 4(7):39-55.

    [7] 彭智浩,杨风暴,王志社,等.基于数学形态学和自动区域生长的红外目标提取[J].红外技术, 2014, 36(1):47-52.
    [8]

    QIN A K, DAVID A C. Multivariate image segmentation using semantic region growing with adaptive edge penalty [J].IEEE Transactions on Image Processing, 2010,8(19):2157-2170.

    [9] 胡广书.数字信号处理-理论、算法与实现[M].北京:清华大学出版社,2012.
    [10] 任明照,黄永巍,高东海.基于多幅连续相关法的超声检测信号的缺陷识别技术[J].无损检测,2012,34(4):38-41.
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 刊出日期:  2017-07-09

目录

    /

    返回文章
    返回