Feature Extraction Method of Carbon Fiber Composites Damage Acoustic Emission Signals Based on Wavelet Packet-Characteristic Entropy
-
摘要: 针对碳纤维复合材料层合板弯曲失效过程开展了声发射监测试验,并对试验采集的声发射信号进行了K-均值聚类分析,提取了不同损伤类型的声发射信号,对每种损伤类型的信号利用小波包特征熵的分析方法,选取能反映不同损伤类型的特征参数,实现对碳纤维复合材料不同损伤信号的有效识别,为碳纤维复合材料的损伤监测提供了理论依据。Abstract: In this paper, the acoustic emission monitoring test was used for bending failure process of carbon fiber composite laminated plate. K-means cluster analysis was applied to processing the acoustic emission signals that were collected from experiments. Acoustic emission signals of different damage types were extracted. The analysis method of wavelet packet feature entropy was used to select the characteristic parameter that can reflect different damage types in signal for each damage types. The different damage signals of carbon fiber composites can be identified effectively. It provides the oretical basis for damage monitoring of carbon fiber composite.
-
-
[1] 中国航空研究院.复合材料结构设计手册[M].北京:航空工业出版社,2001:135-160. [2] 戴光. 声发射检测技术在中国——庆祝中国机械工程学会无损检测分会成立三十周年[J].无损检测,2008,30(7):389-394. [3] 习年生,于志成,陶春虎.纤维增强复合材料的损伤特征及失效分析方法[J].航空材料学报,2000,20(2):55-63. [4] 李建忠,刘国奇,陈振华.基于小波包分解的不锈钢焊缝超声TOFD检测信号及缺陷信号提取[J].无损检测,2015,37(1):39-41. [5] 程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998. [6] 桂中华,韩凤琴.小波包特征熵神经网络在尾水管故障诊断中的应用[J].中国电机工程学报,2005,25(4):100-102. [7] JUAN F R.Wavelet packet energy, tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions[J]. Neurocomputing, 2012, 77(1):82-94.
[8] 王利英.小波包特征熵-神经网络在轴承故障诊断中的应用[J].河北工程大学学报(自然科学版),2008,25(1):50-52. [9] SAMI E, SELCUK Y. Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition[J]. Expert Systems with Applications, 2008, 34(4):2937-2944.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 1