Gas Floating Electromagnetic Acoustic Thickness Measuring Transducer for Steel Tube
-
摘要: 为了对钢管的电磁超声测厚系统进行升级,在前期设计的磁化器与线圈分离的电磁超声测厚探头的基础上,提出了一种气浮式电磁超声测厚探头的设计方法,其原理是利用在探靴和钢管表面之间形成的气膜消除接触式摩擦,来实现对钢管的全浮动随动跟踪。通过理论分析,得出了钢管不同偏心率下气浮探靴的最大承载力;并通过搭建8通道电磁超声检测设备对钢管进行测厚试验,结果验证了该方法的有效性。理论分析和试验结果表明,相比传统的钢管电磁超声测厚方法,气浮式钢管测厚解决了探头的磨损严重问题,延长了探头的使用寿命,更好地满足了钢管在线检测的需求。Abstract: In order to adapt to the increasing production efficiency, the existing electromagnetic acoustic thickness measurement system for steel tube needs to be upgraded. On the basis of the preliminary designed transducer with the magnetizer and the testing coils separated, a gas floating designing method for the electromagnetic acoustic thickness measuring transducer is proposed. The gas film formed between the steel tube surface and the agent shoes is used to eliminate the contact friction, so as to realize the full floating servo tracking for the steel pipe. The maximum bearing capacity of the air floatation agent shoes under different eccentricity of the steel tube is obtained through the theoretical calculation. And the electromagnetic acoustic testing equipment with 8 channels was set up to measure the thickness of the steel tube. The accuracy of the measurement results shows that the method is effective. Theoretical analysis and experimental results show that, compared with the traditional method of electromagnetic acoustic thickness measurement for steel pipe, the gas floating designing method can solve the seriously wear problems of a long time contacting with the steel tube, and largely extend the service life of the probe, so as to meet the needs of the steel tube on-line detection preferably.
-
Keywords:
- Electromagnetic acoustic transducer /
- Steel tube /
- Thickness measurement /
- Gas floating /
- Agent shoe
-
-
[1] 贾鹏军,罗金恒,刘琰,等.石化成口油外输管道泄漏的无损检测[J].无损检测,2016,38(3):11-13. [2] 钱宏亮,王艳斌,闫重强,等.基于电磁超声的金属管道腐蚀检测仪的研制[J].无损检测,2015,37(6):24-28. [3] TU Jun, KANG Yi-hua, LIU Yao-yao. A new magnetic configuration for a fast EMAT applied to on-line steel pipe wall thickness measurements[J]. Materials Evaluation, 2014, 72(11):1407-1413.
[4] 姚燕生, 郭宝林, 代祥. 气浮式无摩擦气缸设计[J]. 机械设计与研究, 2014, 30(2):89-91. [5] 尹韶辉, 彭杰宏, 唐昆,等. 非球面超精密气浮式测头设计及仿真[J]. 中国机械工程, 2014, 25(10):1279-1285. [6] 郑永洁, 张笃周, 谌颖. 空间机器人气浮式物理仿真系统有效性研究[J]. 空间控制技术与应用, 2010, 36(6):33-38. [7] 张新宇,陈忠基,姚瑶. 基于有限元的气浮支承系统的数值模拟与实验研究[J]. 辽宁科技大学学报, 2008, 31(3/4):285-287. [8] 高亮,黄秋波,高磊. 一种气垫式电磁超声探头气膜性能的计算分析[J].无损探伤,2005,27(2):73-74. [9] 刘敦,刘育华,陈世杰.静压气体润滑[M].哈尔滨:哈尔滨工业大学出版社,1990.
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 2