• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

脉冲扰动电磁场检测非表面缺陷埋深的识别算法

孔庆晓, 李 伟, 葛玖浩, 张传荣

孔庆晓, 李 伟, 葛玖浩, 张传荣. 脉冲扰动电磁场检测非表面缺陷埋深的识别算法[J]. 无损检测, 2016, 38(10): 21-24. DOI: 10.11973/wsjc201610006
引用本文: 孔庆晓, 李 伟, 葛玖浩, 张传荣. 脉冲扰动电磁场检测非表面缺陷埋深的识别算法[J]. 无损检测, 2016, 38(10): 21-24. DOI: 10.11973/wsjc201610006
Algorithm for Recognition of the Buried Depth of Non-surface Crack Using Pulse Perturbation Electromagnetic Field[J]. Nondestructive Testing, 2016, 38(10): 21-24. DOI: 10.11973/wsjc201610006
Citation: Algorithm for Recognition of the Buried Depth of Non-surface Crack Using Pulse Perturbation Electromagnetic Field[J]. Nondestructive Testing, 2016, 38(10): 21-24. DOI: 10.11973/wsjc201610006

脉冲扰动电磁场检测非表面缺陷埋深的识别算法

基金项目: 

国家自然科学基金资助项目(51574276)

中央高校基本科研业务费专项资金资助项目(15CX05024A, 16CX06017A)

国家重点研发计划资助项目(2016YFC0802300)

山东省自然科学基金英才基金资助项目(ZR2015EM009)

青岛市科技成果转化引导计划(青年专项)资助项目(14-2-4-49-jch)

详细信息
    作者简介:

    孔庆晓(1992-), 男, 硕士研究生, 研究方向为电磁无损检测。

  • 中图分类号: TG115.28

Algorithm for Recognition of the Buried Depth of Non-surface Crack Using Pulse Perturbation Electromagnetic Field

  • 摘要: 交流电磁场检测技术是一种新型的电磁无损检测技术, 但由于趋肤效应的存在, 其对表面裂纹检测具有较高的敏感性, 但对于非表面缺陷检测存在着技术瓶颈。借助脉冲激励源在工件中产生的感应电流渗透深度大的特点, 进行非表面缺陷的脉冲扰动电磁场检测技术仿真与试验, 提出了基于小波熵理论的非表面缺陷埋深识别算法。试验结果表明, 所构建的脉冲扰动电磁场缺陷识别算法可有效识别和区分不同埋深缺陷。
    Abstract: Alternating current filed measurement (ACFM) is an emerging electromagnetic for nondestructive testing technology. Because of skin effect, ACFM is highly sensitive to surface open crack, but critical for non-surface defect. In this paper, the pulse excitation is presented for non-surface crack detection based on alternating current field measurement technique. According to the simulation and experimental results, the wavelet entropy theory is proposed for non-surface defect recognition. Results show that the proposed algorithm can distinguish different buried crack depths effectively.
  • [1] LI W, CHEN G, LI W, et al. Analysis of the inducing frequency of a U-shaped ACFM system[J]. Ndt & E International, 2011, 44(3):324-328.
    [2] ZHENF W, ZHANG L, SU Y, et al. Optimization design of alternating current field measurement inducer[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 49(1):133-143.
    [3] SOPHIAN A, TIAN G Y, ZAIRI S. Pulsed magnetic flux leakage techniques for crack detection and characterisation[J]. Sensors & Actuators A Physical, 2006, 125(2):186-191.
    [4] LEBRUN B, JAYET Y, BABOUX J C. Pulsed eddy current application to the detection of deep cracks[J]. Materials Evaluation, 1995, 53(11): 1296-1300.
    [5] TANG Y, PAN M C, LUO F L, et al. Experimental and finite element analysis study of 3D magnetic field sensing for pulsed magnetic flux leakage defect characterisation[J]. Insight - Non-Destructive Testing and Condition Monitoring, 2011, 53(9):497-506.
    [6] SOPHIAN A, TIAN G Y, TAYLOR D, et al. A feature extraction technique based on principal component analysis for pulsed Eddy current NDT[J]. Ndt & E International, 2003, 36(1):37-41.
    [7] TIAN G Y, SOPHIAN A, TAYLOR D, et al. Wavelet-based PCA defect classification and quantification for pulsed eddy current NDT[J]. IEE Proceedings - Science, Measurement and Technology, 2005, 152(4):141-148.
    [8] HE Y, PAN M, LUO F, et al. Pulsed eddy current imaging and frequency spectrum analysis for hidden defect nondestructive testing and evaluation[J]. Ndt & E International, 2011, 44(4):344-352.
    [9] 刘岱, 刘涛, 詹湘琳,等. 基于小波包分析的超声相控阵检测信号特征提取[J].电子技术与软件工程, 2014(23) :143-144.
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-21
  • 刊出日期:  2016-10-09

目录

    /

    返回文章
    返回