• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

轴类工件表面视觉自动检测系统

孙阔原, 蒋理兴, 王俊亚, 张峰, 韩硕

孙阔原, 蒋理兴, 王俊亚, 张峰, 韩硕. 轴类工件表面视觉自动检测系统[J]. 无损检测, 2016, 38(6): 53-57. DOI: 10.11973/wsjc201606013
引用本文: 孙阔原, 蒋理兴, 王俊亚, 张峰, 韩硕. 轴类工件表面视觉自动检测系统[J]. 无损检测, 2016, 38(6): 53-57. DOI: 10.11973/wsjc201606013
SUN Kuo-yuan, JIANG Li-xing, WANG Jun-ya, ZHANG Feng, HAN Shuo. Automatic Visual Inspection System of Shaft Part Surface[J]. Nondestructive Testing, 2016, 38(6): 53-57. DOI: 10.11973/wsjc201606013
Citation: SUN Kuo-yuan, JIANG Li-xing, WANG Jun-ya, ZHANG Feng, HAN Shuo. Automatic Visual Inspection System of Shaft Part Surface[J]. Nondestructive Testing, 2016, 38(6): 53-57. DOI: 10.11973/wsjc201606013

轴类工件表面视觉自动检测系统

详细信息
    作者简介:

    孙阔原(1991-),男,硕士研究生,主要研究方向为机器视觉检测。

  • 中图分类号: TP271+.4; TG115.28

Automatic Visual Inspection System of Shaft Part Surface

  • 摘要: 表面物理损伤检测是轴类工件质量检测的重要环节,为提高表面质量检测的自动化水平并建立相关行业标准,设计了一套机器视觉检测系统来实现生产中轴类工件的表面检测。采用黑白线阵CCD相机通过暗视野前向照明方式获取合适的图像;经过图像增强、滤波等预处理后采用最大类间方差法对图像进行阈值分割;经过形态学处理,提取缺陷轮廓信息;以轮廓的长宽比以及面积作为评价准则,提取主要轮廓;计算缺陷重心坐标,即定位点坐标;单片机通过与上位机通信,控制打码笔标记出缺陷的位置。采用该系统在不同轴类工件上进行试验,结果表明:缺陷检测系统误检率在5%以下,漏检率为0,能满足轴类工件表面在线实时检测的要求。
    Abstract: Surface physical damage detection is an important part of the shaft part quality inspection. In order to improve the automation level of the quality detection of shaft part and establish its relevant industry quality standard, a machine vision inspection system connected with MCU was designed to realize the surface detection of shaft part. The system adopted the monochrome line-scan digital camera and used the dark-field and forward illumination technology to acquire images with high contrast; the images were segmented to Bi-value images through maximum between-cluster variance method after image filtering and image enhancing; then the mainly contours were extracted based on the evaluation criterion of the aspect ratio and the area; then the coordinates of the center of gravity of defects area, namely locating point coordinates were calculated. At last, locations of the defects area were marked by the coding pen communicated with MCU. Experiment showed that no defect was omitted and false alarm error rate was lower than 5%, which showed that the designed system met the demand of shaft part on-line real-time detection.
  • [1] SMITH B.Making war on defects: six-sigma design[J].IEEE Spectrum,1993,30(9):43-47.
    [2] 李智明,窦中英.小角度纵波探头检测轴类零件表面横向缺陷的可行性[J].无损检测,2008,28(4):363-366.
    [3] DWORKIN S B, NYE T J. Image processing for machine vision measurement of hotformed parts[J]. Journal of Materials Processing Technology,2006,174(1):1-6.
    [4] GOLNABI H, ASADPOUR A. Design and application of industrial machine vision systems[J].Robotics and Computer-Integrated Manufacturing,2007,23(6):630-637.
    [5] JIN W S, CHAO Y G. Study on detection system of bullet surface defect based on machine vision[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013,4:59-64.
    [6] WANG J, YANG X. Auto-detect of machine vision and its application in assembling inspection[C]∥Intelligent Control and Automation, World Congress on IEEE.Taipei,IEEE, 2011:18-22.
    [7] WANG D. Quality defect and it's prevention in grinding the out surface of shaft parts[J]. Coal Mine Machinery, 2000,1:30-31.
    [8] 李武斌,路长厚,李君,等.圆钢表面缺陷视觉检测技术研究现状与展望[J]. 无损检测, 2012,34(5):54-58.
    [9] YANG J, ZHANG F. New method of spherical surface defect detection based on machine vision[J]. Advanced Materials Research, 2011,295:1274-1278.
    [10] 左延红.轴类零件自动检测系统研究[D].兰州:兰州理工大学, 2006.
    [11] 叶伯洪.基于计算机视觉检测的轴类零件尺寸高精度检测方法研究与应用[D].广州:广东工业大学,2010.
    [12] 张宇,黄亚博,焦建彬.一种基于机器视觉的圆型零件检测技术[J].计算机工程,2008,34(19):185-186,202.
    [13] 徐杜,蒋永平.采用数字同步技术的轴类零件尺寸光电检测[J].光电工程,2004,31(8):45-48.
    [14] 付佳佳.基于图像处理技术的轴类工件多参数自动检测技术研究[D]. 长春:吉林大学, 2014.
    [15] 伍济钢,宾鸿赞.薄片零件尺寸机器视觉检测系统的研发[J].装备制造技术,2009(12):88-90.
    [16] 李伟斌,高二,宋松和.一种全局最小化的图像分割方法[J].电子与信息学报,2013,35(4):791-796.
    [17] OTSU N. Athreshold selection method fromgray-levelhistograms[J].IEEE Transaction on Systems, Man, and Cybernetics,1979,9(1):62-66.
    [18] KITTLER J, ILLINGWORTH J. Minimum error thresholding[J]. Pattern Recogntion, 1986,19(1):41-47.
    [19] HORNG M H,LIOU R J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm[J].Expert Systems with Applications, 2011,38(12):14805-14811.
    [20] TSAI W H. Moment-preserving thresholding: a new approach[J]. Computer Vision,Graphics,and Image Processing, 1985, 29(3): 377-393.
    [21] 吴凤和.基于计算机视觉测量技术的图像轮廓提取方法研究[J]. 计量学报, 2007, 28(1):18-22.
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-12
  • 刊出日期:  2016-06-09

目录

    /

    返回文章
    返回