Evaluation on Quantitative Recognition of Micro Cracks by Magnetic Leakage Test Based on GA-BP Neural Network
-
摘要: 介绍了利用遗传算法优化BP神经网络, 实现金属中微细裂纹漏磁检测定量化评价的基本原理。将遗传算法和人工神经网络有机结合, 进行漏磁定量化检测, 既提高了算法的全局搜索性, 又良好地适应于非线性问题。试验结果表明, 将该人工智能算法应用于工程实际, 能有效实现基于漏磁检测信号的金属中微细裂纹定量化评价。Abstract: The basic principle of realizing quantitative evaluation of metal micro crack detection with using BP neural network optimized by genetic algorithm is introduced. Organic combination of genetic algorithm and artificial neural network not only improves global search performance, but also maintains good adaptability to nonlinear problems during magnetic flux leakage detection. Final experimental results show that the artificial intelligence algorithm applied in practical engineering can realize quantitative assessment of metal micro cracks based on magnetic leakage signals.
-
-
[1] 杨秀江. 模块组合式三维电磁检测阵列传感器设计与研究[D]. 北京: 北京理工大学, 2014. [2] 王长龙, 陈自立, 马晓琳, 等. 漏磁检测的缺陷可视化技术[M]. 北京: 国防工业出版社, 2014. [3] 刘斌, 付英, 于慧, 等.基于GGA算法磁记忆检测模型的研究[J].仪器仪表学报, 2014, 35 (10): 2200-2207. [4] 桂延宁, 焦李威, 张福顺.基于小波和BP神经网络的无线电探测目标识别技术[J].电子学报, 2003, 31(12): 1811-1814. [5] 雷英杰, 张善文.MATLAB遗传算法工具箱及应用[M].西安: 西安电子科技大学出版社, 2005. [6] 孙洁娣, 温江涛, 靳世久.基于改进BP网络的管道安全检测技术研究[J].仪器仪表学报, 2006, 27(6): 1647-1649. [7] 种向婷. 基于GA-BP 神经网络的结构损伤识别研究[D]. 北京: 华北电力大学, 2014. [8] 史金阳.管道漏磁检测缺陷识别方法的研究[D]. 沈阳: 沈阳工业大学, 2009.
计量
- 文章访问数: 2
- HTML全文浏览量: 0
- PDF下载量: 3