• 中国科技论文统计源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
高级检索

基于共振解调和小波包能量谱的声发射信号特征提取

徐嗣嘉, 林丽, 周勇

徐嗣嘉, 林丽, 周勇. 基于共振解调和小波包能量谱的声发射信号特征提取[J]. 无损检测, 2016, 38(1): 1-5. DOI: 10.11973/wsjc201601001
引用本文: 徐嗣嘉, 林丽, 周勇. 基于共振解调和小波包能量谱的声发射信号特征提取[J]. 无损检测, 2016, 38(1): 1-5. DOI: 10.11973/wsjc201601001
XU Si-jia, LIN Li, ZHOU Yong. The Extraction of the Feature of Acoustic Emission Signal Based on Resonance Demodulation and the Wavelet Spectrum Packet[J]. Nondestructive Testing, 2016, 38(1): 1-5. DOI: 10.11973/wsjc201601001
Citation: XU Si-jia, LIN Li, ZHOU Yong. The Extraction of the Feature of Acoustic Emission Signal Based on Resonance Demodulation and the Wavelet Spectrum Packet[J]. Nondestructive Testing, 2016, 38(1): 1-5. DOI: 10.11973/wsjc201601001

基于共振解调和小波包能量谱的声发射信号特征提取

基金项目: 

国家自然科学基金资助项目(51275066)

湖南科技大学机械设备健康维护湖南省重点实验室开放基金资助项目(201401)

详细信息
    作者简介:

    徐嗣嘉(1990-),男, 研究生, 主要研究方向为列车故障诊断。

  • 中图分类号: TG115.28

The Extraction of the Feature of Acoustic Emission Signal Based on Resonance Demodulation and the Wavelet Spectrum Packet

  • 摘要: 将小波包能量谱分析和共振解调法相结合, 应用于声发射信号的特征提取中。首先, 将声发射信号进行小波包分解, 得到若干个子频带; 然后计算各个子频带所包含的能量, 描述出各子频带能量占信号总能量百分比; 再将其与正常声发射信号能量谱对比, 分析出变化较为明显的子频带; 最后运用共振解调技术, 对该频带做Hilbert包络谱分析, 得出信号特征。结果表明:该方法可以有效提取出声发射信号的特征, 是声发射信号特征提取的一种新方法。
    Abstract: A new approach of combining the method of resonance demodulation and multi-resolution analysis of wavelet packet is presented to characterize the acoustic emission (AE) signals. Firstly, wavelet packet is used to decompose the acoustic emission signal into several frequency bands. Then the energy of each frequency band is calculated to draft the percentages of each band on total energy. Secondly, the above-mentioned results shall be compared with the energy spectrum of normal acoustic emission signal and the sub-bands which change more obviously shall be obtained. Based on the technology of resonance demodulation, the band which changes a lot is decomposed by Hilbert transform to get the feature of signal. According to the experimental data analysis, it shows that this method can effectively extract the characteristic of acoustic emission and it is a new way of acoustic emission feature extraction.
  • [1] 沈功田, 戴光, 刘时风.中国声发射检测技术进展[J].无损检测, 2003, 25(6): 302-307.
    [2] 王子玉, 孔凡让.基于共振解调和小波分析方法的轴承故障特征提取研究[J].现代制造工程, 2011(1): 117-121.
    [3] 廖传军, 罗晓莉, 李学军.小波包在声发射信号特征提取中的应用[J].电子测量与仪器学报, 2008, 22(4): 79-85.
    [4] 杨杰.声发射信号处理与分析技术的研究[D].长春:吉林大学, 2005.
    [5] 飞思科技产品研发中心.小波分析理论与MATLAB 7实现[M].北京:电子工业出版社, 2005.
    [6] 侯丽娴, 杨绍普, 刘永强, 等.基于共振解调的铁路货车轴承故障诊断[J].石家庄铁道大学学报, 2013, 26(4): 47-51.
    [7] 林丽, 赵德有.导管架海洋平台声发射信号识别系统[J].无损检测, 2009, 31(1): 42-47.
    [8] LIN Li, CHU Fu-lei. HHT-based AE characteristics of natural fatigue cracks in rotating shafts[J]. Mechanical Systems and Signal Processing, 2012,26:181-189.
    [9] 王江萍, 孙文莉.基于小波包能量谱齿轮振动信号的分析与故障诊断[J].机械传动, 2011, 35(1): 55-58.
    [10] 印嘉.基于小波包能量谱与HHT的隔膜泵主轴故障诊断研究[D].昆明:昆明理工大学, 2013.
计量
  • 文章访问数:  3
  • HTML全文浏览量:  2
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-06
  • 刊出日期:  2016-01-09

目录

    /

    返回文章
    返回