• 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
Advanced Search
TIAN Yuhang, WU Jianbo, HU Bin, SHEN Chuan, FANG Hui. High precision monitoring method of variable temperature pipe wall thickness based on correlation analysis[J]. Nondestructive Testing, 2025, 47(3): 29-34. DOI: 10.11973/wsjc240304
Citation: TIAN Yuhang, WU Jianbo, HU Bin, SHEN Chuan, FANG Hui. High precision monitoring method of variable temperature pipe wall thickness based on correlation analysis[J]. Nondestructive Testing, 2025, 47(3): 29-34. DOI: 10.11973/wsjc240304

High precision monitoring method of variable temperature pipe wall thickness based on correlation analysis

More Information
  • Received Date: July 07, 2024
  • In the field of pipe wall thickness corrosion monitoring, piezoelectric ultrasonic technology plays an important role. When the pipe wall thickness is measured by piezoelectric ultrasound, the change of pipe temperature will affect the performance of the ultrasonic coupling agent and lead to the change of the amplitude of the reflected wave, which makes the ultrasonic time-of-flight cannot be calculated correctly by the threshold method and the envelope analysis method, resulting in large wall thickness measurement errors. To solve this problem, a piezoelectric ultrasonic wall thickness measurement system for variable temperature pipeline was built in this paper. Ultrasonic time-of-flight measurement method based on correlation analysis was used to calculate ultrasonic time-of-flight, and the ultrasonic wave velocity was compensated by temperature and wave velocity correction model, so as to improve the measurement accuracy of variable temperature pipeline wall thickness. The results showed that the resolution of pipe wall thickness measurement was increased to 0.01mm, and the measurement error of pipe wall thickness was less than 0.05 mm, and the proposed measurement method could realize the measurement of pipe wall thickness at temperature ranging from -20 ℃ to 70 ℃ and meet the requirements of piezoelectric ultrasonic temperature variable pipe wall thickness monitoring.

  • [1]
    崔省安,李德升,李杰,等. 油气管道内腐蚀检测技术的现状与发展探讨[J]. 石化技术,2019,26(10):317,328.
    [2]
    宋积文,张亮,金曦. 油气管道在线腐蚀监测技术的研究现状及发展趋势[J]. 当代化工研究,2022(20):152-154.
    [3]
    阚子建. 腐蚀监测技术在油气田的应用[J]. 盐科学与化工,2019,48(9):7-11.
    [4]
    程晓畅,苏绍景,王跃科,等. 超声回波信号解调及其包络相关时延估计算法[J]. 传感技术学报,2006,19(6):2571-2573,2577.
    [5]
    詹戈. 液体超声流量计飞行时间方法的简单确定[J]. 地下水,2021,43(4):221-223.
    [6]
    KHYAM M O ,GE S S ,LI X D ,et al .Highly accurate time-of-flight measurement technique based on phase-correlation for ultrasonic ranging[J]. IEEE Sensors Journal,2017,17(2):434-443.
    [7]
    张从鹏,李弘,周邦平. 基于互相关法的超声波高精度回波定位方法研究[J]. 机电工程,2019,36(8):830-834.
    [8]
    李慧娟,陈友兴,席海军,等. 相关匹配在超声测厚信号特征提取中的应用[J]. 中国测试,2015,41(3):96-98.
    [9]
    朱义德,杨瑞峰,郭晨霞,等. 自具补偿互相关超声测距系统设计[J]. 仪表技术与传感器,2021(4):85-88,121.
    [10]
    杨雨洪,黄劼,甘芳吉. 超声波测厚系统回波处理方法[J]. 电子测量技术,2018,41(23):66-69.
    [11]
    邱福寿,伍剑波,傅登伟,等. 温度变化对干耦合压电腐蚀监测的影响及其补偿方法[J]. 无损检测,2022,44(2):12-16.
    [12]
    彭映成,钱海,黎小毛,等. 基于时间互相关的超声测距信号获取方法[J]. 仪表技术与传感器,2014(6):126-127,130.
    [13]
    李慧娟,陈友兴,席海军,等. 相关匹配在超声测厚信号特征提取中的应用[J]. 中国测试,2015,41(3):96-98.
    [14]
    李醒飞,纪越,吴军. 高精度超声测距系统中自相关小波去噪法[J]. 纳米技术与精密工程,2016(3):179-185.

Catalog

    Article views (14) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return