• 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
Advanced Search
WANG Shusen, LI Ping, HUANG Dawei, LI Xiaoqing, WU Zhonghua, ZHANG Zhongren, WANG Shuang, TIAN Shuang, YANG Yide. Image recognition and enhancement of X-ray detection of weld defects based on deep learning[J]. Nondestructive Testing, 2024, 46(6): 17-23. DOI: 10.11973/wsjc202406004
Citation: WANG Shusen, LI Ping, HUANG Dawei, LI Xiaoqing, WU Zhonghua, ZHANG Zhongren, WANG Shuang, TIAN Shuang, YANG Yide. Image recognition and enhancement of X-ray detection of weld defects based on deep learning[J]. Nondestructive Testing, 2024, 46(6): 17-23. DOI: 10.11973/wsjc202406004

Image recognition and enhancement of X-ray detection of weld defects based on deep learning

More Information
  • Received Date: January 17, 2024
  • In order to enhance the accuracy of X-ray image recognition for weld seam defects, it is essential to employ effective image enhancement techniques. this study investigates investigated the impact of different image enhancement techniques on the quality of weld seam images. The parametersEvaluation metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Structural Clarity, and Information Entropy wereare employed to assess the quality of image enhancement. Experimental results indicated that histogram equalization (HE) and contrast-limited adaptive histogram equalization (CLAHE) exhibited superior contrast enhancement effects, while non-local means filtering (NLM) and discrete wavelet transform (DWT) performed well in noise reduction. Image enhancement processing based on CLAHE-NLM proveds to be more effective in assisting deep learning models for weld seam defect classification and recognition. The accuracy and F1 score of weld seam defect classification reached 97.6% and 96.93%, respectively, representing an improvement of 3.2% and 5.23% compared to the data set without enhancement preprocessing.

  • [1]
    VILAR R ,ZAPATA J ,RUIZ R .An automatic system of classification of weld defects in radiographic images[J].NDT & E International,2009,42(5):467-476.
    [2]
    ZHANG Z F ,WEN G R ,CHEN S B .Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding[J].Journal of Manufacturing Processes,2019,45:208-216.
    [3]
    KHUMAIDI A, YUNIARNO E M, PURNOMO M HWelding defect classification based on convolution neural network (CNN) and Gaussian kernel2017 International Seminar on Intelligent Technology and Its Applications (ISITIA)Surabaya,IndonesiaIEEE2017KHUMAIDI A ,YUNIARNO E M ,PURNOMO M H .Welding defect classification based on convolution neural network (CNN) and Gaussian kernel[C]//2017 International Seminar on Intelligent Technology and Its Applications (ISITIA).Surabaya,Indonesia:IEEE,2017.
    [4]
    李超,孙俊 .基于机器视觉方法的焊缝缺陷检测及分类算法[J].计算机工程与应用,2018,54(6):264-270.
    [5]
    BOSSE S ,MANIRY D ,MULLER K R ,et al .Deep neural networks for No-reference and full-reference image quality assessment[J].IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society,2018,27(1):206-219.
    [6]
    HOU W H ,WEI Y ,GUO J ,et al .Automatic detection of welding defects using deep neural network[J].Journal of Physics:Conference Series,2018,933:012006.
    [7]
    RAHMAN T ,KHANDAKAR A ,QIBLAWEY Y ,et al .Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images[J].Computers in Biology and Medicine,2021,132:104319.
    [8]
    张文璐工业X射线图像增强算法的研究太原中北大学2022张文璐. 工业X射线图像增强算法的研究[D]. 太原:中北大学,2022.
    [9]
    DIWAKAR M ,KUMAR M .A review on CT image noise and its denoising[J].Biomedical Signal Processing and Control,2018,42:73-88.
    [10]
    HOU W H ,WEI Y ,JIN Y ,et al .Deep features based on a DCNN model for classifying imbalanced weld flaw types[J].Measurement,2019,131:482-489.
    [11]
    周冲基于梯度场的工业X射线图像增强及算法加速研究太原中北大学2020周冲 .基于梯度场的工业X射线图像增强及算法加速研究[D].太原:中北大学,2020.
    [12]
    ZHANG L ,ZHANG Y J ,DAI B C ,et al .Welding defect detection based on local image enhancement[J].IET Image Processing,2019,13(13):2647-2658.
    [13]
    辛晨基于图像处理的工业X射线探伤关键技术研究西安西安电子科技大学2014辛晨 .基于图像处理的工业X射线探伤关键技术研究[D].西安:西安电子科技大学,2014.
    [14]
    朱凯,李理,张彤,等 .视觉Transformer在低级视觉领域的研究综述[J].计算机工程与应用,2024,60(4):39-56.
    [15]
    赵云龙,葛广英 .智能图像处理:Python和OpenCV实现[M].北京:机械工业出版社,2022.
    [16]
    HWANG H ,HADDAD R A .Adaptive Median filters:new algorithms and results[J].IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society,1995,4(4):499-502.
    [17]
    BUADES A,COLL B,MOREL J MA non-local algorithm for image denoising2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)San Diego,CA,USAIEEE2005BUADES A ,COLL B ,MOREL J M .A non-local algorithm for image denoising[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).San Diego,CA,USA:IEEE,2005.
    [18]
    TOMASI C,MANDUCHI RBilateral filtering for gray and color imagesSixth International Conference on Computer VisionBombay,IndiaIEEE1998TOMASI C ,MANDUCHI R .Bilateral filtering for gray and color images[C]//Sixth International Conference on Computer Vision.Bombay,India:IEEE,1998.
    [19]
    WANG Z ,BOVIK A C ,SHEIKH H R ,et al .Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society,2004,13(4):600-612.
    [20]
    谢小甫,周进,吴钦章. 一种针对图像模糊的无参考质量评价指标[J]. 计算机应用,2010,30(4):921-924.

Catalog

    Article views (218) PDF downloads (102) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return