• 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科技核心期刊
  • 中国机械工程学会无损检测分会会刊
Advanced Search
LI Fengyuan, YU Runqiao, CHEN Jingbo, LIN Yuting, LIU Songyuan. Weak magnetic testing technology of wind power gear[J]. Nondestructive Testing, 2024, 46(6): 7-11. DOI: 10.11973/wsjc202406002
Citation: LI Fengyuan, YU Runqiao, CHEN Jingbo, LIN Yuting, LIU Songyuan. Weak magnetic testing technology of wind power gear[J]. Nondestructive Testing, 2024, 46(6): 7-11. DOI: 10.11973/wsjc202406002

Weak magnetic testing technology of wind power gear

More Information
  • Received Date: November 27, 2023
  • A nondestructive testing technology based on weak magnetic principle was proposed to address the problem that existing nondestructive testing techniques were unable to meet the requirements of detecting multiple types of defects in wind turbine gears. Using the proposed method, the experiments were designed to detect two types of 17Cr2Ni2Mo steel samples with different defects, detection data were collected, signal processing and analysis were performed, and the results with industrial CT and Barkhausen noise detection were compared finally. The experimental results showed that weak magnetic detection technology was more sensitive to surface and internal crack defects of gears, had good recognition for grinding burns of gears, accurate positioning, and the results after signal processing were more-intuitive and clear. This method has the potential for application in nondestructive testing of wind turbine gears.

  • [1]
    刘怀举,刘鹤立,朱才朝,等 .轮齿齿面断裂失效研究综述[J].北京工业大学学报,2018,44(7):961-968.
    [2]
    陈雪峰,郭艳婕,许才彬,等 .风电装备故障诊断与健康监测研究综述[J].中国机械工程,2020,31(2):175-189.
    [3]
    马玉峰风电机组齿轮箱故障趋势预测方法研究北京华北电力大学2013马玉峰 .风电机组齿轮箱故障趋势预测方法研究[D].北京:华北电力大学,2013.
    [4]
    何宝凤,魏翠娥,石照耀 .齿轮磨削烧伤检测方法研究现状及发展方向[J].仪器仪表学报,2017,38(8):1889-1900.
    [5]
    TOUTOUNTZAKIS T ,MBA D .Observations of acoustic emission activity during gear defect diagnosis[J].NDT & E International,2003,36(7):471-477.
    [6]
    刘柄显,丁思源,郑海波 .基于巴克豪森效应预测烧伤齿轮显微组织的变化[J].无损检测,2019,41(5):38-43.
    [7]
    郑硕文,刘泓滨,段先云,等 .基于机器视觉的齿轮缺陷检测系统设计[J].机械制造,2017,55(10):96-97,103.
    [8]
    伍玉琴,徐海元,成晓军 .基于机器视觉的齿轮缺陷识别研究[J].煤矿机械,2019,40(4):170-172.
    [9]
    徐启圣,白琨,徐厚昌,等 .风电齿轮箱状态监测和故障诊断的研究现状及发展趋势[J].润滑与密封,2019,44(8):138-147.
    [10]
    唐云,魏昂昂,童彤,等 .面向风电机组行星齿轮箱故障诊断的振动监测技术研究综述[J].风能,2022(8):92-95.
    [11]
    姜禹桐,熊乐超,张统伟,等 .基于弱磁技术的火车轮踏面裂纹检测[J].中国测试,2021,47(1):29-35.
    [12]
    王焱祥,于润桥,林志福,等 .储油罐底板腐蚀的弱磁检测[J].无损检测,2017,39(7):49-53.
    [13]
    郭国明,丁红胜,谭恒,等 .铁磁性材料的力磁效应机理探讨与实验研究[J].测试技术学报,2012,26(5):369-376.
    [14]
    刘志峰,费志洋,黄海鸿,等 .激励磁场对力磁耦合作用的强化机制研究[J].中国机械工程,2018,29(9):1108-1114,1126.
    [15]
    郑钧,侯锐锋 .小波去噪中小波基的选择[J].沈阳大学学报,2009,21(2):108-110.
    [16]
    朱海,高胜峰,蔡鹏,等 .基于拉依达准则的自适应小波阈值选取方法[J].海洋技术学报,2016,35(4):50-54.

Catalog

    Article views (50) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return