DOI: 10.11973/wsjc202403005

控制棒导向套筒内外部的视频检测

张鹏飞,杨乾飞,马 超,曾晨明,束家龙

(中广核检测技术有限公司,苏州 215021)

摘 要:基于核电厂对控制棒导向卡磨损测量和锁紧杯视频检查的现实需求,通过对控制棒 导向套筒内外部结构和检查环境的分析,提出了相应的视频检查方案,开发了导向卡磨损测量装置 和锁紧杯视频检测装置,对其机器视觉测量技术进行了分析,并成功应用于核电站的在役检查,指 导了相关磨损严重控制棒导向套筒的更换。

关键词:控制棒导向套筒;视频检测;机器视觉

中图分类号: TG115.28 **文献标志码:** A **文章编号:**1000-6656(2024)03-0020-04

Video inspection for inside and outside of control rod guide tube

ZHANG Pengfei, YANG Qianfei, MA Chao, ZENG Chenming, SHU Jialong

(CGNPC Inspection Technology Co., Ltd., Suzhou 215021, China)

Abstract: Based on the practical requirements of nuclear power plants for wear measurement of control rod guide card and video inspection of screw locking cap, this paper proposed a corresponding video inspection scheme by analyzing the internal and external structures and inspection environment of control rod guide tube, developed a control rod guide card wear measurement device and a screw locking cap video inspection device, studied the machine vision measurement techniques of control rod guide card, and successfully applied it to the in-service inspection of nuclear power plants, directed the replacement of CRGT with severe wear.

Key words: control rod guide tube; video inspection; machine vision

核电厂通过控制棒的提升和插入控制反应堆的 输出功率,在停闭反应堆时,要求控制棒必须迅速落 入堆芯以使反应堆停堆^[1]。核电厂中,控制棒落棒 时间试验都是法规强制要求的。

控制棒导向套筒(Control rod guide tube, CRGT)的主要功能是对控制棒束(Rod cluster control assembly, RCCA)的步进运动起导向作用, 避免控制棒与CRGT导向卡之间产生干扰,确保落 棒时间满足核安全要求。RCCA在CRGT内的垂 直步进,以及控制棒在CRGT内部的振动,都会造 成RCCA和CRGT的磨损。运行经验表明, CRGT 的磨损主要发生在其导向卡中心区域的孔、韧带区、 开口位置,可能导致控制棒的卡棒,甚至引起RCCA

20

通信作者:张鹏飞,zhang_pf2005@163.com

2024 年 第 46 卷 第 3 期 无损检测 落棒时间增加的问题。CRGT 通过螺栓与上支撑 板连接,同时在螺栓头外部增加锁紧杯,用于防止螺 钉松脱。但受水流振动、腐蚀及意外磕碰等因素影 响,锁紧杯可能会出现焊缝开裂,甚至脱落等问题, 给机组运行安全带来隐患。因此,开展控制棒导向 卡磨损测量技术和锁紧杯视频检测技术的分析,开 发相应的在役检测技术与装备显得尤为重要。

1 检测对象

CRGT 全长约 4 m,由上部导向筒组件和下部 导向筒组件构成,通过螺钉固定在上支撑板和堆 芯上栅格板上。上部导向筒组件外形为圆柱状, 内部包含 4 层导向卡,两根抗扭棒穿过每层导向 卡和盖板并与盖板焊接起来,盖板位于上部导向 筒组件顶端,中心有直径为 58.5 mm 的圆孔,是控 制棒驱动杆的运动通道;下部导向筒组件外形为 方形,内部包含 6 层导向卡和 1 个连续段。CRGT

收稿日期:2023-10-31

作者简介:张鹏飞(1983一),男,高级工程师,主要从事核电站在 役检测设备的研发工作

内部几乎为封闭结构,而且相邻 CRGT 的距离较近(约75 mm),一旦落入异物极难取出。由于 CRGT 位于反应堆压力容器中心位置,且其下部 靠近燃料组件,因此 CRGT 内部辐射水平极高。 上部导向筒组件通过4颗螺钉和上支撑板连接, 锁紧杯利用自身变形嵌入4颗螺钉头部,再点焊 在上部导向筒组件的安装法兰上,用以防止螺钉 松脱。CRGT内外部结构示意如图1所示。

图 1 CRGT 内外部结构示意

2 方案设计

2.1 定位原理

为了将设备坐标系和 CRGT 自身坐标系对应,便 于缺陷描述和后期复检、跟踪,故建立了检测坐标系。

根据 CRGT 的结构特点,利用上部导向筒组件 顶端的盖板上表面作为轴向零点,向下为正方向,设 备安装座下表面和盖板上表面保持重合;利用上部 筒体的圆柱面作为定心基准,利用抗扭棒伸出盖板 的部分作为周向基准,角度方向和 CRGT 周向角度 一致。这样,就可以实现设备和 CRGT 之间的坐标 对应关系。

2.2 控制棒导向卡磨损测量装置

对于控制棒导向卡的磨损测量,国内外主要有 两种方式:超声检测和视频检测。超声检测的测量 精度较高,但风险较高;视频检测精度稍差,但风险 可控。鉴于 CRGT 开口小,内部空间大,设备卡涩 的后果严重,故选择了视频检测方法。控制棒导向 卡磨损测量装置主要有两个自由度,轴向运动和周 向旋转,其结构如图 2 所示。

图 2 控制棒导向卡磨损测量装置结构示意

轴向运动机构为视频系统提供轴向运动,由上 固定座、限位传感器、滑块、齿条管、型材、轴向电机、 下固定座、直齿轮等组成。上固定座和下固定座通 过型材连接为一体;限位传感器固定在型材上,为齿 条管提供轴向运动的零位;齿条管固定在滑块上,滑 块可沿型材长度方向直线运动,与固定在下固定座 上的直线轴承组成两点支撑,保证齿条管有足够的 刚度;轴向电机、直齿轮固定在下固定座上,直齿轮 可通过与齿条管上的齿相啮合,驱动齿条管上下运 动;摄像头安装在齿条管内部,通过齿条管的带动沿

21

周向旋转机构为视频系统提供周向运动,由外 筒、周向电机、定位座等组成。外筒、周向电机和下 固定座之间固定连接,与轴向运动机构连为整体,内 筒和定位座之间固定连接,可相对周向电机旋转;定 位座安装在 CRGT 上,保证了控制棒导向卡磨损测 量装置和 CRGT 之间的坐标对应关系。

2.3 锁紧杯视频检测装置

对于锁紧杯的视频检测,现有的检测装置主要 为手动长杆式设备,检测时不可避免地存在抖动情况,图像质量不佳,且易磕碰,安全性不高。采用自 动化检测设备可提高摄像头的稳定性,改善图像质 量,也有助于提高检测过程的安全性和可靠性。

锁紧杯视频检测装置的结构示意如图 3 所示, 该结构和定位原理与控制棒导向卡磨损测量装置类 似,区别在于锁紧杯视频检测装置的摄像头位于 CRGT 外部,可绕 CRGT 轴线周向旋转,另外,该摄 像头还具有俯仰功能,可从不同角度对锁紧杯焊缝 进行视频检测。

图 3 锁紧杯视频检测装置结构示意

3 机器视觉测量技术

CRGT 导向卡最靠近中心的 4 个 E 孔的韧带 长度较短(约 3.3 mm),最容易在指向中心的方向上 被磨穿,从而使导向卡失去导向作用,控制棒脱出, 严重时还会引起卡棒或者控制棒损坏等不良后果。 因此采取对 E 孔精确测量,对整体导向卡进行异物 检测的方式,如图 4 所示。

图 4 CRGT 导向卡的机器视觉测量 机器视觉测量系统主要由标定模块、图像采集 模块、图像测量模块组成。设备检测前先在标定试 块上调整摄像头的焦距、光照、视野,利用机器视觉 识别出 E 孔直径、开槽宽度、联系带宽度等信息,并 通过试块上不同磨损状况的标准数据进行校准。现 场检测时,设备采用相同的参数进行检验,从而保证 检测系统的可靠性。

图像采集模块主要利用控制棒导向卡磨损测量 装置将摄像头运动至待检导向卡上端的焦距处,进 行图像抓取。采集得到的图像需要进行预处理,包 括阈值分割、图像去噪、边缘提取、图像校正等操作, 以提高图像轮廓识别的精度。由于透镜的形状会引 入径向畸变,同时在相机的组装过程中,很难保证透 镜和成像平面严格平行,从而引入切向畸变,故需通 过棋盘格工具先对相机畸变参数进行校正,确定畸 变参数的具体值。相机参数校正完成后,对采集的 图像使用上述畸变参数进行调整即可完成图像的校 正,减少图像的径向、切向畸变,提高测量精度。相 机畸变参数校正前后的图像效果对比如图 5 所示。

(a) 校正后

图 5 相机畸变参数校正前后的图像效果对比

图像测量模块是整个系统的核心,基于某视觉 处理平台进行二次开发,使用边缘检测 Sobel 滤波 器、自动测量算法完成导向卡的尺寸测量。Sobel 滤波器根据图像上某一像素点周围不同角度的 8 个 相邻位置的像素进行灰度加权差计算,在边缘处计 算值达到极值的特点进行检测边缘。该算子对噪声 具有良好的平滑作用,能提供较为精确的边缘方向 信息,检测效果如图 6 所示。

通过上述一系列图像处理方法获取图像轮廓 后,再设计特定的算法完成尺寸的自动测量,效果如 图 7 所示。

2024 年 第 46 卷 第 3 期 无损检测

22

图 6 基于 Sobel 算子的边缘检测效果

图 7 图像尺寸自动测量效果

4 系统验证

2020年以来,开发的控制棒导向卡磨损测量装 置已在4台核电机组中进行了在役检测应用(见图 8),发现了多个韧带磨损殆尽的导向卡,其检测结果 指导了15根磨损严重的CRGT的更换。

图 8 CRGT 内部视频检测装置在役检测

利用控制棒导向卡磨损测量装置对磨损严重的 导向孔进行测量,测量结果如图 9 所示,其中第 2~ 5 层导向卡的 E1 导向孔直径均大于理论直径 10.67 mm;左右韧带长度均为 0 mm,而理论长度约 为 3.3 mm;韧带槽宽度均大于理论宽度 6.1 mm, 也大于控制棒的直径 9.7 mm。可以看出,连续 4 层 导向卡的 E1 孔均出现了严重磨损,且存在控制棒 脱出、卡棒风险,需要立即更换。

表 1 磨损严重 CRGT 导向孔的测量结果 mm

导向卡	导向孔	导向孔直径	左韧带长度	右韧带长度	韧带槽宽度
第5层	E1	11.93	0.00	0.00	9.79
第4层	E1	11.90	0.00	0.00	9.79
第3层	E1	11.95	0.00	0.00	9.99
第2层	E1	11.66	0.00	0.00	9.86

图 9 控制棒导向卡磨损测量装置对磨损严重导向孔的 测量结果

锁紧杯视频检测装置也在相关试块上进行了测 试(见图 10),取得了预期效果。对放置于水下的锁 紧杯模拟缺陷试块进行测试,能够清楚地分辨出宽 度为 25 μm,长度为 2.2 mm 的刻槽,表明所采用的 技术和工艺能够满足视频检测的要求,测试结果如 图 11 所示。

图 10 锁紧杯视频检测装置验证现场

图 11 锁紧杯模拟缺陷试块测试

(下转第43页)

23

Ndt

从表 5 的评价结果可以看出,壁板 A4~A9 无 法满足继续使用 4 a 的要求,需要进行腐蚀区域修 补、更换壁板、降低液位运行或者停用储罐。

3.4 腐蚀原因分析

结合宏观检查和相控阵 C 扫描检测,腐蚀最严 重的 A5、A6 壁板均在加热排管孔的逆时针方向, A5 壁板还开有排污口,腐蚀相对严重的 A7、A8 壁 板开有加热排管口和进出料口,加热排管口顺时针 方向的 A9 壁板也腐蚀相对严重,同样开有排污口。 而腐蚀主要集中在加热排管口周边区域,因为热蒸 汽和冷凝水的交替作用使得该区域形成较为温热潮 湿的腐蚀环境,为罐壁腐蚀创造了良好条件;保温层 密封不严使得水分在第一层罐壁下方堆积,造成保 温层下腐蚀;其次储罐的运行温度为 90 ℃,此温度 下的保温层下基本腐蚀速率相对较高。相比于原始 厚度 24 mm,表 4 结果显示第一层罐壁板均存在不 同程度的腐蚀,可见整个保温层均存在密封不严导 致水分聚集的情况,而较多的罐壁开孔和较高的操 作温度最终加剧了保温层下腐蚀的发生。

4 结语

超声相控阵 C 扫描技术对储罐壁板的大面积 保温层下腐蚀检测具有较好的应用效果,可直观展 现壁板腐蚀情况及内部缺陷信息,减小了常规超声 测厚结果误判的可能性,实现了储罐壁板单元最小 厚度的精准测量,最终提高了罐壁局部腐蚀评价的 准确性和可靠性,同时无需大面积拆除保温层,为企 业节约了检验检测成本,具有一定的应用前景。笔 者针对保温层下腐蚀所设计的检测方案和评价方法 需要开罐检测,应用尚存在一定的限制,实现储罐在 线保温层下腐蚀的精准定量检测是储罐检测行业今 后发展的方向。

参考文献:

- [1] 谢逢豪,吴洁,鞠伟轶,等.危险化学品常压储罐安全 研究综述[J].工业安全与环保,2023,49(8):76-81.
- [2] 王维斌,张强,林明春,等.基于多源数据的储罐预测 性维检修策略[J].油气储运,2022,41(7):787-794.
- [3] 薛岩,李佳,周广言,等.在役储罐底板的兰姆波检测 [J].无损检测,2022,44(12):62-66.
- [4] 王十,邓进,邢述,等. 在线声发射技术在储罐底板泄 漏检测中的应用[J]. 石油化工设备技术, 2022, 43 (6):32-35, 40, 5-6.
- [5] 杨志军,孙晗,曹怀情,等.储罐底板缺陷补焊维修后的漏磁场特征研究[J].压力容器,2021,38(12):77-83.
- [6] 赵彦修,王十.在役常压储罐罐壁完整性检测与评价 标准问题探讨[J].中国特种设备安全,2021,37(12): 13-16,34.
- [7] 李佳林.油田常压储罐保温层下腐蚀检测与防护[J].全面腐蚀控制,2020,34(8):71-73,76.
- [8] 徐中原,王维,王玉林,等.大型原油储罐的在线全面 检测技术应用[J].无损检测,2019,41(2):52-55.
- [9] 卢超,钟德煌. 超声相控阵检测技术及应用[M]. 北 京:机械工业出版社,2021.
- [10] 沈建民.大型油罐的静强度及动力响应分析[D].杭 州:浙江大学,2006.

(上接第 23 页)

5 结语

通过对控制棒导向套筒内外部结构和检测环境 的分析,提出了相应的视频检测方案,开发了控制棒 导向卡磨损测量装置和锁紧杯视频检测装置,对控 制棒导向卡的机器视觉测量技术进行了分析,并成 功应用于核电站的在役检测。现场使用和测试验证 表明,控制棒导向卡磨损测量装置和锁紧杯视频检测装置能够满足 CRGT 内外部视频检测的需求,可以为相关 CRGT 的更换提供技术支撑。

参考文献:

[1] 李国勇,金远,郑杲,等. 落棒时间自动测量方法研究 与实现[J]. 核动力工程,2016,37(4):53-57.